
Frameworks for Software and Hardware Device
Virtualization

Bring Your Own Virtual
Devices

Stefan Hajnoczi

stefanha@redhat.com

1

mailto:stefanha@redhat.com

About me

Virtualization team at Red Hat
QEMU and Linux VIRTIO drivers

VIRTIO Technical Committee
Virtio-vsock and virtio-fs devices

Areas
Storage, device emulation, tracing

Online
https://blog.vmsplice.net/, stefanha on #qemu IRC,
@stefanha:matrix.org

2

https://blog.vmsplice.net/

An overview of
out-of-process device
interfaces for
QEMU/KVM

3

Linux VFIO
VFIO/mdev

vDPA

VDUSE

vhost (kernel)

vhost-user
vfio-user

Devices implemented outside the Virtual

Machine Monitor (VMM) or Hypervisor

▸ Appear like any other device to the virtual

machine

▸ Can be added to a VM without installing new

VMM or Hypervisor software

4

What are out-of-process devices?

Out-of-process devices present a interesting

combination of:

▸ Proven real-world applications

▸ Active development

▸ Rich area for systems research

HPC has high I/O requirements and creating your

own devices can yield significant improvements

5

Why this talk?

6

Traditional emulators implement device hardware

register accesses through trap-and-emulate

▸ VMM dispatches memory access to device

emulation code

▸ Device emulation runs in vCPU thread while

vCPU is paused

▸ Result is returned to guest and vCPU resumes

Trap-and-emulate devices

movl (%rsi),%eax
cmpl $0x1000,%eax

Trap handler and memory
access dispatcher

Device emulation code

Trap read
from
address in
%rsi

Place result
into %eax

7

Devices are part of the emulator and operate in

close proximity to the guest

▸ QEMU, crosvm, etc employ multi-threading or

forking models but devices are fundamentally

part of the VMM

▸ No ability to add/remove device

implementations

In-process devices

Network card Storage
controller

Guest

...

Other emulator components

Emulator with in-process devices

8

▸ In some situations it’s faster to

centralize device emulation into

a single process serving multiple

VMs

▸ Example: avoiding IPC memory

copies in a software-defined

networking switch

▸ Example: dedicating host CPU

cores to polling

Use cases for out-of-process devices: Performance

Guest

NIC

Guest

NIC

Guest NIC Guest

NIC

Copy

In-process devices

Out-of-process devices

9

▸ Fine-grained device processes

helps with privilege separation

▸ Tighter sandboxing (seccomp,

SELinux, namespaces)

Use cases for out-of-process devices: Security

Guest

NIC

Guest

NIC

In-process devices

Out-of-process devices

Disk

Disk

10

▸ Mix and match programming

languages

▸ Linking cross-language code is

possible within a process but

messy and complex

▸ Example: C core, Rust devices,

Python fuzzer devices

Use cases for out-of-process devices: Polyglot emulators

Guest

NIC

Guest NIC

In-process devices

Out-of-process devices

Disk

NIC

Core

Python Core RustC

11

▸ Placing emulated devices into

VMs

▸ Stronger isolation of devices

▸ Easy to deploy in compute

clouds where users cannot run

processes on the host

Use cases for out-of-process devices: Inter-VM device emulation

NICGuest Guest

12

▸ Sharing device emulation code between VMMs

▸ Special-purpose device implementations to achieve niche requirements

▸ ...

▸ The pros/cons depend on the details of your VMM and Hypervisor but there are

many use cases.

Use cases for out-of-process devices: More...

13

▸ Give guest access to a physical device

▸ PCI, PCI SR-IOV, accelerators, SmartNICs

▸ Relatively high barrier to creating your own device

Types of OoP device interfaces: Hardware passthrough

We will cover Linux VFIO

NIC

Guest

Hypervisor

Hardware

Host kernel

14

▸ Run device emulation in a separate software component

▸ vhost (VIRTIO-based) devices

▸ Relatively easy to create your own device

Types of OoP device interfaces: Software

We will cover vhost (kernel), vhost-user, vfio-user, VDUSE

Guest
NIC

15

▸ Give guest data path access to physical device with control path

managed in software

▸ Mediated devices, Intel® Scalable I/O Virtualization, etc

▸ Combines qualities of hardware passthrough with more flexible and

lightweight software control

Types of OoP device interfaces: Software/hardware hybrid

We will cover Linux VFIO/mdev and vDPA

NIC (data)

Guest

Hardware

Host kernelNIC (ctrl)

16

▸ Offload VIRTIO data path to host kernel

▸ Kernel code has access to special functionality:

･ Network stack, LIO SCSI target, etc

▸ VIRTIO control path handled by VMM

▸ Devices: vhost_net, vhost_vsock, vhost_scsi

vhost (kernel)
Since 2010

vhost
virtqueues

Guest

Host kernel

Host userspaceVIRTIO
device

Links:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/vhost/

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/vhost/

17

▸ ioeventfd signals vhost worker thread when guest

hardware access causes vmexit

▸ irqfd injects interrupt into guest

▸ Memory regions are configured by VMM to

provide access to guest RAM

▸ vhost lifecycle managed by VMM via ioctls

How vhost (kernel) works

vhost
device

Guest

Host kernel

Host userspaceVIRTIO
device

kvm
ioeventfd

MMIO/PIO
vmexit

irqfd

Interrupt
injection

ioctls

Links:
https://blog.vmsplice.net/2011/09/qemu-internals-vhost-architecture.html

https://blog.vmsplice.net/2011/09/qemu-internals-vhost-architecture.html

18

vhost (kernel) ioctls

Command Purpose

VHOST_GET/SET_FEATURES VIRTIO feature negotiation

VHOST_SET/RESET_OWNER Associating a device with a userspace process

VHOST_SET_MEM_TABLE Configuring guest RAM

VHOST_SET_VRING_NUM/ADDR/BASE Configuring vring memory structure

VHOST_SET_VRING_KICK Assigning ioeventfd for driver->device notifications

VHOST_SET_VRING_CALL Assigning irqfd for device->driver notifications

Links:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/vhost.h

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/vhost.h

19

vhost (kernel) device implementation

▸ Add a new driver to Linux drivers/vhost/

▸ Modify VMM’s VIRTIO device emulation to

use your vhost driver

▸ Consider syzkaller for fuzzing your driver

20

Links:
https://www.kernel.org/doc/html/latest/driver-api/vfio.html

▸ Linux API for userspace device drivers (PCI

and other busses)

▸ QEMU uses VFIO for hardware passthrough

▸ Devices are isolated by IOMMU

･ Device can only touch guest RAM

▸ Guest requires driver for the specific device

▸ Suitable for your own PCI and PCI SR-IOV

devices like accelerators or SmartNICs

Linux VFIO
Since 2012

https://www.kernel.org/doc/html/latest/driver-api/vfio.html

21

Links:
Intel VT-d Posted Interrupts - https://software.intel.com/content/dam/develop/external/us/en/documents/vt-directed-io-spec.pdf

How Linux VFIO works

Guest

PCI DeviceBAR

MMIO
Interrupts

▸ Memory-mapped I/O (MMIO) directly accesses device

▸ Interrupts are directly injected into guest using interrupt

controller virtualization features

▸ DMA isolation enforced by host IOMMU

▸ PCI proxy device resides on an emulated PCI bus

･ PCI Configuration Space is still emulated

･ Other resources are typically passed through

IOMMU

DMA

Proxy
Device

https://software.intel.com/content/dam/develop/external/us/en/documents/vt-directed-io-spec.pdf

22

VFIO device implementation

▸ Develop and test PCI or PCI SR-IOV device

▸ Most existing PCI devices do not require

changes to VFIO or QEMU, new devices

should not require any changes

23

Links:
https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/vhost-user.rst

▸ Offload VIRTIO data path to a userspace process

▸ vhost-style ioctl commands over a UNIX domain

socket

▸ VIRTIO control path handled by VMM

▸ Devices: vhost-user-net, vhost-user-blk,

vhost-user-scsi, …

▸ Used for software-defined networking and

storage, complex software devices like GPU or file

system servers

vhost-user
Since 2014

Guest

VIRTIO
device

vhost virtqueues

VMM
Device emulation
program

https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/vhost-user.rst

24

▸ Same ioeventfd and irqfd approach as vhost

(kernel)

▸ Similar ioctls as vhost (kernel) but sent as

message over UNIX domain socket

▸ Memory regions are shared using SCM_RIGHTS

file descriptor passing and

mmap(MAP_SHARED)

How vhost-user works

vhost
device

Guest

Host kernel

VIRTIO
device

kvm ioeventfd

MMIO/PIO
vmexit

irqfd

Interrupt
injection

msgs

25
Links:
https://gitlab.com/qemu-project/qemu/-/tree/master/subprojects/libvhost-user
https://dpdk.org/https://spdk.io/https://github.com/rust-vmm/vhost-user-backend

▸ libvhost-user

･ C library with optional glib integration

▸ rust-vmm’s vhost-user-backend

･ Rust crate

▸ Add new protocol messages to vhost-user specification, if necessary

vhost-user device implementation

https://gitlab.com/qemu-project/qemu/-/tree/master/subprojects/libvhost-user
https://dpdk.org/
https://spdk.io/
https://github.com/rust-vmm/vhost-user-backend

26

Links:
https://www.kernel.org/doc/html/latest/driver-api/vfio-mediated-device.html

▸ Software devices in host kernel that implement

VFIO ioctls

▸ Appear to host userspace as VFIO devices

▸ Can pass through hardware resources or can

emulation device functionality in software

▸ Can use IOMMU for DMA isolation of hardware

▸ Suitable for complex devices, software

alternative to SR-IOV

VFIO/mdev
Since 2016

Guest

Host kernelmdev
device

Deviceiomem

https://www.kernel.org/doc/html/latest/driver-api/vfio-mediated-device.html

27

▸ mdev driver’s ->ioctl() callback synthesizes VFIO

ioctl responses

▸ VFIO_REGION_INFO_FLAG_MMAP and “sparse

mmap” enable full or partial hardware

passthrough

▸ Interrupts can be injected by the hardware or

simulated by the software mdev driver

▸ mdev driver can enforce DMA isolation of

hardware using IOMMU

How VFIO/mdev works

Guest

Host kernelmdev
device

PCI Deviceiomem

28

▸ Develop a PCI device if hardware offload is

desired

▸ Develop a Linux VFIO/mdev driver

▸ VMM accesses the device like a regular VFIO

device, no code changes necessary

VFIO/mdev device implementation

29

Links:
https://patchew.org/QEMU/20210614104608.212276-1-thanos.makatos@nutanix.com/

▸ PCI device emulation in userspace, maybe other

busses in the future too

▸ VFIO-style ioctl commands over UNIX domain

socket

▸ vhost-user-style design with shared memory and

eventfds

▸ Software-defined networking and storage,

complex software devices

vfio-user
Currently in development

Guest

Proxy
device

vfio-user device

VMM
Device emulation
program

https://patchew.org/QEMU/20210614104608.212276-1-thanos.makatos@nutanix.com/

30

▸ PCI BARs can:

a. Be mapped into guest

b. Use ioeventfd

c. Trap-and-emulate via a message

▸ Interrupts use irqfd

▸ Memory regions are shared using

SCM_RIGHTS file descriptor passing and

mmap(MAP_SHARED)

How vfio-user works

vfio-user
device

Guest

Host kernel

Proxy
device

kvm ioeventfd

MMIO/PIO
vmexit

irqfd

Interrupt
injection

msgs

31

Links:
https://github.com/nutanix/libvfio-user

▸ libvfio-user

･ C library

･ Currently being used to develop QEMU and SPDK

support

vfio-user device implementation

https://github.com/nutanix/libvfio-user

32

Link:
https://www.redhat.com/en/blog/introduction-vdpa-kernel-framework

▸ Hybrid hardware/software VIRTIO devices

▸ Or pure software VIRTIO devices in host kernel

▸ Exposed to VMMs via vhost_vdpa Linux driver

･ Extended vhost (kernel) ioctl API

▸ Host applications/containers can access devices via

virtio_vpda Linux driver

▸ Suitable for SmartNICs, accelerators, etc

vDPA
Since 2020

Guest

Host kernelvDPA
device

PCI Device

https://www.redhat.com/en/blog/introduction-vdpa-kernel-framework

33

▸ Virtqueue doorbell register writes can be passed

through directly to hardware or handled in

software

▸ Interrupts can be injected by the hardware or

simulated by the software vDPA driver

▸ Guest RAM mappings provided by VMM via

vhost IOTLB API, including host IOMMU support

for hardware passthrough

How vDPA works

Guest

Host kernelvDPA
device

PCI Device

34

▸ Develop a PCI device if hardware offload is

desired

▸ Develop a Linux vDPA driver

▸ VMM needs vhost_vdpa support, which is similar

to vhost (kernel)

vDPA device implementation

35

Links:
https://lore.kernel.org/lkml/20210615141331.407-1-xieyongji@bytedance.com/

▸ Connects userspace devices to host kernel

vDPA subsystem

▸ Devices can be attached to the host or

exposed to guests via vhost_vdpa

▸ Similar to vhost-user except host can also

access devices

▸ Devices: virtio-blk

VDUSE
Currently in development

Guest

Host kernelvDPA &
VDUSE

Device

https://lore.kernel.org/lkml/20210615141331.407-1-xieyongji@bytedance.com/

36

▸ Userspace device registers with host kernel

VDUSE and vDPA subsystem

▸ ioeventfd signals vDPA and forwards to

userspace eventfd when guest hardware access

causes vmexit

▸ VDUSE ioctl injects interrupt

How VDUSE works

Guest

Host kernel

kvm

Device

vDPA &
VDUSE

vmexit
Interrupt
injection

ioeventfd

irq
ioctl

eventfd

37

VDUSE IOTLB API

▸ Userspace mmaps special fd provided by kernel

▸ Kernel bounce buffer prevents exposing kernel

memory to userspace in virtio_vdpa case

▸ Shared memory used in vhost_vdpa case

Copy

Kernel page
with sensitive
data

Bounce
buffer

Device

mmap()
(virtio_vpda)

Guest

mmap()
(vhost_vdpa)

38

▸ No libraries available yet, code against kernel ioctl API

▸ No VMM changes necessary if vDPA device is already

supported

▸ Currently limited to virtio-blk devices but expected to

support more vDPA device types in the future

VDUSE device implementation

39

Choosing the appropriate solution

Out-of-process device
interface

Recommended application

vhost (kernel) Accessing host kernel functionality

VFIO Accelerators and SmartNIC PCI devices

vhost-user Software VIRTIO-based devices

VFIO/mdev Complex PCI devices needing SR-IOV style functionality

vfio-user Software PCI devices

vDPA VIRTIO accelerators and SmartNICs, host applications/containers support

VDUSE Software VIRTIO devices accessible from host applications/containers

40

Choosing the appropriate solution (2)

Security
Performance

Ease of
development Deployment cost

Hardware vs
software

implementation
Live migration VIRTIO or PCI

41

Where to find out more

▸ All of these interfaces are open source

▸ Join the mailing lists and chat

▸ kvm@vger.kernel.org & qemu-devel@nongnu.org

▸ More about technical requirements of

out-of-process device interfaces:

https://blog.vmsplice.net/2020/10/requirements-f

or-out-of-process-device.html

mailto:kvm@vger.kernel.org
mailto:qemu-devel@nongnu.org
https://blog.vmsplice.net/2020/10/requirements-for-out-of-process-device.html
https://blog.vmsplice.net/2020/10/requirements-for-out-of-process-device.html

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

42

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

