Bring Your Own Virtual
Devices

Frameworks for Software and Hardware Device
Virtualization

Stefan Hajnoczi

mailto:stefanha@redhat.com

About me

Virtualization team at Red Hat
QEMU and Linux VIRTIO drivers

VIRTIO Technical Committee
Virtio-vsock and virtio-fs devices

Areas
Storage, device emulation, tracing

Online
https:/blogvmsplice.net/, stefanha on #gemu IRC,
@stefanha:matrix.org

https://blog.vmsplice.net/

Linux VFIO VF10/mdev

VDPA

An overview of et et
out-of-process device

interfaces for
QEMU/KVM

vfio-user VDUSE
vhost-user

3

What are out-of-process devices?

Q0]

B
m—7

Devices implemented outside the Virtual

Machine Monitor (VMM) or Hypervisor

>

Appear like any other device to the virtual

machine

Can be added to a VM without installing new

VMM or Hypervisor software

Why this talk?

Out-of-process devices present a interesting

combination of:
» Proven real-world applications
> Active development

> Rich area for systems research

HPC has high |/O requirements and creating your

own devices can yield significant improvements

Trap-and-emulate devices

Traditional emulators implement device hardware

register accesses through trap-and-emulate

» VMM dispatches memory access to device
emulation code

» Device emulation runs in vCPU thread while

vCPU is paused

» Resultis returned to guest and vCPU resumes

Trapread MOV (%FS)] %eax

from cmpl $06x1000, %eax

addressin

%rsi
Place result
into %eax

Trap handler and memory
access dispatcher

Device emulation code

In-process devices

Guest

Storage

Network card
controller

Other emulator components

Emulator with in-process devices

Devices are part of the emulator and operate in

close proximity to the guest

» QEMU, crosvm, etc employ multi-threading or
forking models but devices are fundamentally
part of the VMM

» No ability to add/remove device

implementations

Use cases for out-of-process devices: Performance

In some situations it's faster to
Guest Guest
centralize device emulation into
Copy
a single process serving multiple NIC <+— NIC

VMs

In-process devices
Example: avoiding IPC memory

copies in a software-defined

Guest Guest

networking switch
j NIC

Example: dedicating host CPU

NIC

cores to polling

Out-of-process devices

Use cases for out-of-process devices: Security

Fine-grained device processes

helps with privilege separation

Tighter sandboxing (seccomp,

SELinux, namespaces)

Guest

-

Disk | | NIC {}>

In-process devices

@

Guest

Disk

NIC

Out-of-process devices

Use cases for out-of-process devices: Polyglot emulators

> Mix and match programming Guest
languages
. . Disk NIC Core
» Linking cross-language code is

possible within a process but ,
In-process devices

messy and complex

» Example: C core, Rust devices,

Python fuzzer devices NIC Guest NIC

Python Core C Rust

Out-of-process devices

n

Use cases for out-of-process devices: Inter-VM device emulation

» Placing emulated devices into
VMs

» Stronger isolation of devices

» Easy to deploy in compute
clouds where users cannot run

processes on the host

Guest

NIC

Guest

12

Use cases for out-of-process devices: More...

Sharing device emulation code between VMMs

Special-purpose device implementations to achieve niche requirements

The pros/cons depend on the details of your VMM and Hypervisor but there are

Many use cases.

Types of OoP device interfaces: Hardware passthrough

» Give guest access to a physical device

» PCI PCISR-IQOV, accelerators, SmartNICs

Hypervisor Host kernel

» Relatively high barrier to creating your own device

NIC Hardware

We will cover Linux VFIO

Types of OoP device interfaces: Software

Guest

» Run device emulation in a separate software component

NIC

» vhost (VIRTIO-based) devices
:: :: » Relatively easy to create your own device

We will cover vhost (kernel), vhost-user, vfio-user, VDUSE

Types of OoP device interfaces: Software/hardware hybrid

» Give guest data path access to physical device with control path

managed in software

» Mediated devices, Intel® Scalable /O Virtualization, etc

» Combines qualities of hardware passthrough with more flexible and NIC (ctrl)

lightweight software control

We will cover Linux VFIO/mdev and vDPA

NIC (data)

Host kernel

Hardware

vhost (kernel)

Guest
|
VIRTIO
: Host userspace
device
: ek Host kernel
virtqueues

Links:
https:/git kernel.org/pub/scm/linux/kernel/qit/torvalds/linux.git/tree/drivers/vhost

Since 2010

» Offload VIRTIO data path to host kernel

» Kernel code has access to special functionality:
Network stack, LIO SCSI target, etc

> VIRTIO control path handled by VMM

» Devices: vhost_net, vhost vsock, vhost_scsi

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/vhost/

17

How vhost (kernel) works

> joeventfd signals vhost worker thread when guest

hardware access causes vmexit
» irgfd injects interrupt into guest

> Memory regions are configured by VMM to

provide access to guest RAM

» vhost lifecycle managed by VMM via ioctls

Links:
https:/blogvmsplice.net/2011/09/gemu-internals-vhost-architecture.html

MMIO/PIO
vmexit

Guest
A |
Interrupt VIRTIO
injection de\I/ice
____________________ J ioctls
o irgfd th st
ioeventfd device

Host userspace

Host kernel

https://blog.vmsplice.net/2011/09/qemu-internals-vhost-architecture.html

vhost (kernel) ioctls

Command
VHOST_GET/SET_FEATURES
VHOST_SET/RESET_OWNER
VHOST_SET_MEM_TABLE
VHOST_SET_VRING_NUM/ADDR/BASE
VHOST_SET_VRING_KICK
VHOST_SET_VRING_CALL

Links:
https:/git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/vhost.h

Purpose

VIRTIO feature negotiation

Associating a device with a userspace process
Configuring guest RAM

Configuring vring memory structure

Assigning ioeventfd for driver->device notifications

Assigning irgfd for device->driver notifications

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/linux/vhost.h

vhost (kernel) device implementation

Add a new driver to Linux drivers/vhost/

Modify VMM's VIRTIO device emulation to

use your vhost driver (l >

Consider syzkaller for fuzzing your driver

Linux VFIO

Since 2012

» Linux API for userspace device drivers (PCI

and other busses)
» QEMU uses VFIO for hardware passthrough
» Devices are isolated by IOMMU
Device can only touch guest RAM
» Guest requires driver for the specific device

» Suitable for your own PCl and PCI SR-IOV

devices like accelerators or SmartNICs

20

Links:
https.//www.kernel.org/doc/html/latest/driver-api/vfio.html

https://www.kernel.org/doc/html/latest/driver-api/vfio.html

How Linux VFIO works

OMA > Memory-mapped I/O (MMIO) directly accesses device
Guest

» Interrupts are directly injected into guest using interrupt

Proxy controller virtualization features
Device

» DMAisolation enforced by host OMMU

MMIO | | IOMMU : :
Interrupts » PCI proxy device resides on an emulated PCl bus

PCI Configuration Space is still emulated
BAR | PCI Device

Other resources are typically passed through

21

Links: ‘ Red Hat

Intel VT-d Posted Interrupts - https:/software.intel.com/content/dam/develop/external/us/en/documents/vt-directed-io-spec.pdf

https://software.intel.com/content/dam/develop/external/us/en/documents/vt-directed-io-spec.pdf

22

VFIO device implementation

Develop and test PCl or PCI SR-IOV device

Most existing PCI devices do not require
changes to VFIO or QEMU, new devices

should not require any changes

<I>

23

vhost-user
Since 2014

» Offload VIRTIO data path to a userspace process

» vhost-style ioctl commands over a UNIX domain

socket

> VIRTIO control path handled by VMM

» Devices: vhost-user-net, vhost-user-blk,

vhost-user-scsi, ...

» Used for software-defined networking and

storage, complex software devices like GPU or file

system servers

Links:
https./qitlab.com/gemu-project/gemu/-/blob/master/docs/interop/vhost-user.rst

Guest

vhost virtqueues

VIRTIO
device

VMM

Device emulation
program

https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/vhost-user.rst

24

How vhost-user works

Same ioeventfd and irgfd approach as vhost
(kernel)

MMIO/PIO

Similar ioctls as vhost (kernel) but sent as vmexit

message over UNIX domain socket -

Memory regions are shared using SCM_RIGHTS
file descriptor passing and
mmap(MAP_SHARED)

Guest
A |
Interrupt V|RT|O MSgs
injection | device
irgfd
kvm ioeventfd

vhost
device

Host kernel

25

Links:

https:/gitlab.com/gemu-project/gemu/-/tree/master/subprojects/libvhost-user

https:/dpdk.org/https:/spdk.io/https:/github.com/rust-vmm/vhost-user-backend

<I>

vhost-user device implementation

> libvhost-user
C library with optional glib integration
> rust-vmm'’s vhost-user-backend

Rust crate

» Add new protocol messages to vhost-user specification, if necessary

https://gitlab.com/qemu-project/qemu/-/tree/master/subprojects/libvhost-user
https://dpdk.org/
https://spdk.io/
https://github.com/rust-vmm/vhost-user-backend

26

VFIO/mdev

Since 2016

» Software devices in host kernel that implement

VFIO ioctls

» Appear to host userspace as VFIO devices

» Can pass through hardware resources or can

emulation device functionality in software

» Can use IOMMU for DMA isolation of hardware

» Suitable for complex devices, software

alternative to SR-I0OV

Links:
https./www.kernel.org/doc/html/latest/driver-api/vfio-mediated-device.html

Guest
Y
mdev
device
I i
iomem Device

https://www.kernel.org/doc/html/latest/driver-api/vfio-mediated-device.html

27

How VFIO/mdev works

Guest
A
mdfav Host kernel
device
I y
iomem | PCI Device

mdev driver’s ->ioctl() callback synthesizes VFIO

loctl responses

VFIO_REGION_INFO_FLAG_MMAP and “sparse
mmap” enable full or partial hardware

passthrough

Interrupts can be injected by the hardware or

simulated by the software mdev driver

mdev driver can enforce DMA isolation of
hardware using IOMMU

28

VFIO/mdev device implementation

Develop a PCl device if hardware offload is

desired

Develop a Linux VFIO/mdev driver < l >

VMM accesses the device like a regular VFIO

device, no code changes necessary

29

viio-user

Currently in development

» PCl device emulation in userspace, maybe other

Guest

vfio-user device

busses in the future too

> VFIO-style ioctl commands over UNIX domain

socket

Proxy
device

,/

VMM

Device emulation
program

» vhost-user-style design with shared memory and

eventfds

» Software-defined networking and storage,

complex software devices

Links:
https./patchew.org/QEMU/20210614104608.212276-1-thanos.makatos@nutanix.com/

https://patchew.org/QEMU/20210614104608.212276-1-thanos.makatos@nutanix.com/

30

How vfio-user works

PCI BARs can:;

a. Be mapped into guest
b. Use ioeventfd

c. Trap-and-emulate via a message
Interrupts use irgfd

Memory regions are shared using
SCM_RIGHTS file descriptor passing and
mmap(MAP_SHARED)

MMIO/PIO
vmexit

Guest

Interrupt
injection

|

Proxy
device

mMsgs|| vfio-user
—P»

device

kvm

irgfd

ioeventfd

Host kernel

31

vfio-user device implementation

» libvfio-user

C library < ’)

Currently being used to develop QEMU and SPDK
support

Links:
https:/github.com/nutanix/libvfio-user

https://github.com/nutanix/libvfio-user

32

PCI Device

Link:
https./www.redhat.com/en/blog/introduction-vdpa-kernel-framework

vDPA

Since 2020

» Hybrid hardware/software VIRTIO devices

> Or pure software VIRTIO devices in host kernel

» Exposed to VMMs via vhost_vdpa Linux driver
Extended vhost (kernel) ioctl API

» Host applications/containers can access devices via

virtio_vpda Linux driver

» Suitable for SmartNICs, accelerators, etc

https://www.redhat.com/en/blog/introduction-vdpa-kernel-framework

33

How vDPA works

PCI Device

>

Virtqueue doorbell register writes can be passed
through directly to hardware or handled in

software

Interrupts can be injected by the hardware or

simulated by the software VDPA driver

Guest RAM mappings provided by VMM via
vhost IOTLB API, including host IOMMU support
for hardware passthrough

34

vDPA device implementation

Develop a PCl device if hardware offload is

desired
Develop a Linux vDPA driver

VMM needs vhost_vdpa support, which is similar

to vhost (kernel)

<I>

35

VDUSE

Currently in development

» Connects userspace devices to host kernel

vDPA subsystem

» Devices can be attached to the host or

exposed to guests via vhost_vdpa

» Similar to vhost-user except host can also

access devices

» Devices: virtio-blk

Links:
https:/lore.kernel.org/lkml/20210615141331.407-1-xieyongji@bytedance.com,

Device

Host kernel

https://lore.kernel.org/lkml/20210615141331.407-1-xieyongji@bytedance.com/

How VDUSE works

Guest Device
lnterrupt {_ N eventde l |rq
injection y Vmexit ioct]

K ioeventfd | vDPA &
o S VDUSE
Host kernel

36

Userspace device registers with host kernel
VDUSE and vDPA subsystem

ioeventfd signals vDPA and forwards to
userspace eventfd when guest hardware access

causes vmexit

VDUSE ioctl injects interrupt

VDUSE IOTLB API

» Userspace mmaps special fd provided by kernel

» Kernel bounce buffer prevents exposing kernel

memory to userspace in virtio_vdpa case

» Shared memory used in vhost_vdpa case

mmap()
(vhost_vdpa)

v
Guest Z

37

Device

data

__--="" | mmap()
-7 (virtio_vpda)
-
Copy

- >

/4 /4
Kernel page Bounce
with sensitive buffer

38

VDUSE device implementation

No libraries available yet, code against kernel ioctl API

No VMM changes necessary if vDPA device is already

supported

Currently limited to virtio-blk devices but expected to

support more VDPA device types in the future

<I>

39

Choosing the appropriate solution

Out-of-process device ' Recommended application

interface
vhost (kernel)
VFIO
vhost-user
VFIO/mdev
vfio-user
vDPA

VDUSE

Accessing host kernel functionality

Accelerators and SmartNIC PCl devices

Software VIRTIO-based devices

Complex PCl devices needing SR-IOV style functionality

Software PCl devices

VIRTIO accelerators and SmartNICs, host applications/containers support

Software VIRTIO devices accessible from host applications/containers

‘ RedHat

40

Choosing the appropriate solution (2)

Security
Performance
Ease of

development Deployment cost

Hardware vs
software Live migration
implementation

VIRTIO or PCI

4

Where to find out more

All of these interfaces are open source
Join the mailing lists and chat

kvm@vger.kernel.org & gemu-devel@nongnu.org

More about technical requirements of
out-of-process device interfaces:

https:/blogvmsplice.net/2020/10/requirements-f

or-out-of-process-device.html

mailto:kvm@vger.kernel.org
mailto:qemu-devel@nongnu.org
https://blog.vmsplice.net/2020/10/requirements-for-out-of-process-device.html
https://blog.vmsplice.net/2020/10/requirements-for-out-of-process-device.html

Thank you

Red Hat is the world's leading provider of enterprise
open source software solutions. Award-winning
support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twittercom/RedHat

