
February 16, 2015 | Stefan Hajnoczi1

KVM Architecture Overview

Stefan Hajnoczi <stefanha@redhat.com>

2015 Edition

mailto:stefanha@redhat.com

February 16, 2015 | Stefan Hajnoczi2

Introducing KVM virtualization

KVM hypervisor runs virtual machines on Linux hosts

● Mature on x86, recent progress on ARM and ppc

Most popular and best supported hypervisor on
OpenStack

● https://wiki.openstack.org/wiki/HypervisorSupportMatrix

Built in to Red Hat Enterprise Linux

● Qumranet startup created KVM, joined Red Hat in
2008

https://wiki.openstack.org/wiki/HypervisorSupportMatrix

February 16, 2015 | Stefan Hajnoczi3

Virtualization goals

Efficiently and securely running virtual machines on a
Linux host

● Linux, Windows, etc guest operating systems

● Access to networking and storage in a controlled
fashion

Host

Linux
guest

Windows
guest

DiskNet

February 16, 2015 | Stefan Hajnoczi4

Where does KVM fit into the stack?

OpenStack

libvirt

RHEV

kvm.koHost kernel

Management for
datacenters and clouds

Management for
one host

GuestQEMU
Emulation for
one guest

Host hardware access
and resource mgmt

QMP

February 16, 2015 | Stefan Hajnoczi5

More on QEMU and kvm.ko

Host kernel

QEMU

QXL gfx card

RAM

virtio-blk disk

...
Live migration

VNC remote display

Storage migration

...

Virtualization features

Device emulation

Intel VMX
Guest/host mode switching

In-kernel
Device emulation

kvm.ko

February 16, 2015 | Stefan Hajnoczi6

Hardware virtualization support with Intel VMX

Allows safe guest code execution at native speed

● Certain operations trap out to the hypervisor

VMXON

VMLAUNCH
VMRESUME

VMEXIT

Host mode Guest mode

February 16, 2015 | Stefan Hajnoczi7

Memory virtualization with Intel EPT

Extended Page Tables (EPT) add a level of address
translation for guest physical memory.

Guest
Page
Table

Host
Page
Table

Physical
RAM

Guest memory address

February 16, 2015 | Stefan Hajnoczi8

How QEMU uses kvm.ko

QEMU userspace process uses kvm.ko driver to execute guest
code:

open("/dev/kvm")
ioctl(KVM_CREATE_VM)
ioctl(KVM_CREATE_VCPU)
for (;;) {
 ioctl(KVM_RUN)
 switch (exit_reason) {
 case KVM_EXIT_IO: /* ... */
 case KVM_EXIT_HLT: /* ... */
 }
}

February 16, 2015 | Stefan Hajnoczi9

QEMU process model

QEMU is a userspace process

Unprivileged and isolated using
SELinux for security

Each KVM vCPU is a thread

Host kernel scheduler decides
when vCPUs runHost kernel

Guest
RAM

QEMU

February 16, 2015 | Stefan Hajnoczi10

Linux concepts apply to QEMU/KVM

Since QEMU is a userspace process, the usual Linux
tools work:

ps(1), top(1), etc see QEMU processes and threads

tcpdump(8) sees tap network traffic

blktrace(8) sees disk I/O requests

SystemTap and perf see QEMU activity

etc

February 16, 2015 | Stefan Hajnoczi11

Architecture: Event-driven multi-threaded

Event loops are used for timers, file descriptor
monitoring, etc

● Non-blocking I/O

● Callbacks or coroutines

Multi-threaded architecture but with big lock

● VCPU threads execute in parallel

● Specific tasks that would block event loop are done
in threads, e.g. remote display encoding, RAM live
migration work, virtio-blk dataplane, etc

● Rest of QEMU code runs under global mutex

February 16, 2015 | Stefan Hajnoczi12

Architecture: Emulated and pass-through devices

Guest sees CPU, RAM, disk, etc like on real machines

● Unmodified operating systems can run

● Paravirtualized devices for better performance

Most devices are emulated and not real

● Isolation from host for security

● Sharing of resources between guests

Pass-through PCI adapters, disks, etc also possible

● Dedicated hardware

February 16, 2015 | Stefan Hajnoczi13

Architecture: Host/guest device emulation split

Guest device – device model visible to guest

Intel e1000 virtio-netrtl8139

L2TPv3 sockettap

Host device – performs I/O on behalf of guest

Decouples
hardware
emulation from
I/O mechanism

February 16, 2015 | Stefan Hajnoczi14

Architecture: virtio devices

KVM implements virtio device models

● net, blk, scsi, serial, rng, balloon

● See http://docs.oasis-open.org/virtio/ for specs

Open standard for paravirtualized I/O devices

Red Hat contributes to Linux and Windows guest
drivers

http://docs.oasis-open.org/virtio/

February 16, 2015 | Stefan Hajnoczi15

Architectural exception: vhost in-kernel devices

Most device emulation is best done in userspace

● Some APIs or performance features only available
in host kernel

vhost drivers emulate virtio devices in host kernel

● vhost_net.ko high-performance virtio-net emulation
takes advantage of kernel-only zero-copy and
interrupt handling features

● Other devices could be developed in theory, but
usually userspace is a better choice

February 16, 2015 | Stefan Hajnoczi16

Storage in QEMU

qcow2 raw …

raw-posix rbd (Ceph) …

Block drivers fall in two categories:

Formats – image file formats (qcow2, vmdk, etc)

Protocols – I/O transports (POSIX file, rbd/Ceph, etc)

Plus additional block drivers that interpose like quorum,
blkdebug, blkverify

February 16, 2015 | Stefan Hajnoczi17

Storage stack

VFS

Block layer

VFS

Block layer

Format

Protocol

Application

Disk

Guest – application plus full file system
and block layer

QEMU – image format, storage migration,
I/O throttling

Host – full file system and block layer

Beware double caching and anticipatory
scheduling delays!

February 16, 2015 | Stefan Hajnoczi18

Walkthrough: virtio-blk disk read request (Part 1)

Request header

Data buffer

Request footer

1. Guest fills in
request descriptors

Guest RAM

2. Guest writes to virtio-blk
virtqueue notify register

QEMU

kvm.ko

Device
emulation

Guest

February 16, 2015 | Stefan Hajnoczi19

Walkthrough: virtio-blk disk read request (Part 2)

3. QEMU issues I/O request on behalf of guest

QEMU

kvm.ko

Device
emulation

Guest

Linux AIO

VFS

Block layer

Physical disk

Data buffer

February 16, 2015 | Stefan Hajnoczi20

Walkthrough: virtio-blk disk read request (Part 3)

4. QEMU fills in request footer and injects completion interrupt

QEMU

kvm.ko

Device
emulation

Guest

Linux AIO

VFS

Block layer

Physical disk

Request footer

Interrupt

February 16, 2015 | Stefan Hajnoczi21

Walkthrough: virtio-blk disk read request (Part 4)

Request header

Data buffer

Request footer

6. Guest reads data
from buffer

Guest RAM

5. Guest receives interrupt
and executes handler

QEMU

kvm.ko

Guest

Interrupt

February 16, 2015 | Stefan Hajnoczi22

Thank you!

Technical discussion: qemu-devel@nongnu.org

IRC

● #qemu on irc.oftc.net

● #kvm on chat.freenode.net

http://qemu-project.org/

http://linux-kvm.org/

More on my blog: http://blog.vmsplice.net/

mailto:qemu-devel@nongnu.org
http://qemu-project.org/
http://linux-kvm.org/
http://blog.vmsplice.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

