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Agenda

IOThread and AioContext

● Managing event loop threads

● How the block layer was made IOThread-friendly

Memory access in multi-threaded device emulation

● Dirty memory bitmap

● Recursive memory dispatch

Multiqueue block layer

● Approaches
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Why does multi-threading matter?

Symmetric multiprocessing (SMP) changes the game:

vcpu

cpu

vcpu

cpu

vcpu

cpu

vcpu

cpu

vcpu

cpu

Uniprocessor Not exploiting SMP Exploiting SMP

Must exploit SMP to fully utilize hardware

QEMU was not designed with SMP in mind

How can we exploit SMP in QEMU?



KVM FORUM 2014 | STEFAN HAJNOCZI4

KVM architecture
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vmexit
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dispatch)
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execution
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Main loop
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VNC,
I/O

completion)

vcpu thread vcpu thread main loop

QEMU code generally runs under global mutex

poll(2)
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State of multi-threading in QEMU 2.1

Component Status

TCG vcpu No

KVM vcpu Yes

virtio-blk dataplane Yes but clean-up remaining

Migration (live phase) Yes

virtio-scsi dataplane In development

Other device emulation No
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Is incremental SMP support a good strategy?

Making everything thread-safe and SMP-friendly:

● Very invasive

● No performance improvement in many places

● Complicates code, single-threaded is simpler

Use multi-threading where there is a real benefit:

● Leave code that is not performance-sensitive
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Current work

My focus has been virtio-blk dataplane since 2011

dataplane moves virtio-blk device emulation into 
dedicated thread

● I/O requests processed outside QEMU global mutex

● Benefits SMP high-iops workloads

dataplane is driving multi-threading work in QEMU:

● Guest memory access

● IOThreads and AioContext
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Managing device emulation threads

IOThread is an event loop thread

● virtio-blk devices can be assigned to an IOThread

qemu -object iothread,id=iothread0

QMP command “query-iothreads”

● Returns: [ { “id”: “iothread0”, “thread-id”: 3134 } ]

● Use “thread-id” for host CPU affinity

Supported in libvirt 1.2.8+
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IOThread CPU affinity x-data-plane=on 1:1 mode

Classic -device virtio-blk-pci,x-data-plane=on:

● 1 IOThread per device

● Makes sense with fewer devices than host CPUs

iothread#0

cpu

iothread#1

cpu

disk disk

Host hardware

QEMU
(userspace)
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IOThread CPU affinity N:M mapping

Host CPU affinity N:M mapping:

● 1 IOThread per host CPU

● Distribute devices across IOThreads

iothread#0

cpu

iothread#1

cpu

disk disk disk disk

Host hardware

QEMU
(userspace)
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virtio-blk dataplane with IOThread

IOThread

ioeventfd

irqfd

Guest
doing

virtio-blk I/O

virtqueue kick

interrupt injection
BlockDriverState

QEMU main loop and global mutex are not involved

QEMU block layer used inside of IOThread

IOThread runs an AioContext event loop
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AioContext event loop

AioContext is an event loop

● File descriptor monitoring

● Timers and BHs

IOThread runs an AioContext event loop:

while (running) {

    aio_context_acquire(context);

    aio_poll(context); /* can block waiting for events */

    aio_context_release(context);

}
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AioContext acquire/release

Another thread may need to access shared resource

aio_context_acquire(context);

...access shared resource...

aio_context_release(context);

If AioContext is in use by IOThread loop, the loop is 
automatically “kicked” so we can acquire

BlockDriverState is protected by AioContext acquire
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How block layer was made IOThread-compatible

Previously: Block layer ran under global mutex

Now: BlockDriverState is bound to AioContext

● bdrv_set_aio_context(bs, new_aio_context)

Rules:

● Acquire AioContext before accessing bs

● Creating/deleting BlockDriverState must be done 
from main loop – bdrv_states protected by global 
mutex

● Lock ordering – only main loop may acquire 
AioContext arbitrarily
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Attaching and detaching from AioContext

BlockDriverState can be migrated to a new AioContext 
at run-time

● e.g. dataplane mode is enabled/disabled

Typical .bdrv_aio_context_attach/detach(...):

● Add/remove file descriptors from AioContext

● Add/remove timers from AioContext

● Ensure that BHs are not pending in old AioContext
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Using the same approach for other subsystems

Do you need to put I/O into an IOThread, but allow 
main loop to access the resource safely?

Use AioContext!
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Thread-safe guest memory access

Emulated devices use DMA or guest memory access

Hence guest memory access must be thread-safe

Thread-safe today:

● Memory regions can be acquired/released

● Guest RAM can be mapped

Missing today:

● Dirty bitmap (for live migration)

● Recursive memory dispatch (i.e. device-to-device)
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Dirty bitmap for guest memory

Live migration tracks dirty guest memory pages

Devices must mark written pages dirty

Live migration will transfer them to the destination host

ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]

Currently access is protected by global mutex
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Making dirty bitmap thread-safe

(Optimistic on this but have not written code yet)

Convert bitmap ops to atomics:

set_dirty() -> atomic_or(&bitmap[i], val)

test_and_clear_dirty() -> atomic_xchg(&bitmap[i], 0)

get_dirty()* -> atomic_mb_read(&bitmap[i])

* This may be used in non-atomic fashion by caller, 
may need to convert to fetch_and_set_dirty() or 
test_and_set_dirty()
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Recursive memory dispatch

Problem: Address space can contain memory-
mapped I/O registers, so device DMA can dispatch to 
a different device!

(Not all architectures may support this but some do) 

Example: SCSI disk READ command DMAs to 
graphics card PCI BAR

...and

● SCSI disk is attached to iothread#0

● Graphics card is attached to iothread#1



KVM FORUM 2014 | STEFAN HAJNOCZI21

Lock ordering problem for recursive dispatch

Currently in SCSI disk's iothread#0 context,

need to access graphics card's iothread#1 context.

If multiple devices do this at the same time there are 
lock ordering problems -> deadlock!

Solution: Release iothread#0 before acquiring 
iothread#1, and re-acquire iothread#0 when finished.

...easier said than done!
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Multiqueue block layer

Host kernel now supports block devices with multiple 
request queues

● Improves SMP scalability

virtio-blk will support multiple virtqueues

How can QEMU avoid becoming the bottleneck?
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Multiqueue block layer in QEMU

virtqueue

cpu

vq

cpu

vq

cpu

vq#1

cpu

vq#2

cpu

Today No QEMU multiqueue QEMU multiqueue

BlockDriverState requires AioContext acquire

For raw images it should be cheap to dispatch I/O

Image formats (qcow2) and storage features may 
restrict multiqueue
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Multiqueue hack for raw image files

Start with dataplane code, lock per-device virtio state

For raw image files only:

● Open multiple BlockDriverStates for the same file

● Bind virtio-blk-pci device to the BDSes

● Run each device in a separate IOThread

Problem: Does not support image formats and breaks 
if snapshots/resize/etc operations are performed.
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Breaking up BlockDriverState for multiqueue?

Per-disk state
and

Queue state

Per-queue state

BlockDriverState

BlockDriverState Per-disk state

BlockQueue
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Questions?

Email: stefanha@redhat.com

Blog: http://blog.vmsplice.net/

IRC: stefanha on #qemu irc.oftc.net

mailto:stefanha@redhat.com
http://blog.vmsplice.net/
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