
KVM FORUM 2014 | STEFAN HAJNOCZI1

Towards Multi-threaded

Device Emulation in QEMU

Stefan Hajnoczi

Red Hat

KVM Forum 2014

KVM FORUM 2014 | STEFAN HAJNOCZI2

Agenda

IOThread and AioContext

● Managing event loop threads

● How the block layer was made IOThread-friendly

Memory access in multi-threaded device emulation

● Dirty memory bitmap

● Recursive memory dispatch

Multiqueue block layer

● Approaches

KVM FORUM 2014 | STEFAN HAJNOCZI3

Why does multi-threading matter?

Symmetric multiprocessing (SMP) changes the game:

vcpu

cpu

vcpu

cpu

vcpu

cpu

vcpu

cpu

vcpu

cpu

Uniprocessor Not exploiting SMP Exploiting SMP

Must exploit SMP to fully utilize hardware

QEMU was not designed with SMP in mind

How can we exploit SMP in QEMU?

KVM FORUM 2014 | STEFAN HAJNOCZI4

KVM architecture

Guest
execution

vmexit
handling

(PIO/MMIO
dispatch)

Guest
execution

vmexit
handling

(PIO/MMIO
dispatch)

Main loop
(monitor,

VNC,
I/O

completion)

vcpu thread vcpu thread main loop

QEMU code generally runs under global mutex

poll(2)

KVM FORUM 2014 | STEFAN HAJNOCZI5

State of multi-threading in QEMU 2.1

Component Status

TCG vcpu No

KVM vcpu Yes

virtio-blk dataplane Yes but clean-up remaining

Migration (live phase) Yes

virtio-scsi dataplane In development

Other device emulation No

KVM FORUM 2014 | STEFAN HAJNOCZI6

Is incremental SMP support a good strategy?

Making everything thread-safe and SMP-friendly:

● Very invasive

● No performance improvement in many places

● Complicates code, single-threaded is simpler

Use multi-threading where there is a real benefit:

● Leave code that is not performance-sensitive

KVM FORUM 2014 | STEFAN HAJNOCZI7

Current work

My focus has been virtio-blk dataplane since 2011

dataplane moves virtio-blk device emulation into
dedicated thread

● I/O requests processed outside QEMU global mutex

● Benefits SMP high-iops workloads

dataplane is driving multi-threading work in QEMU:

● Guest memory access

● IOThreads and AioContext

KVM FORUM 2014 | STEFAN HAJNOCZI8

Managing device emulation threads

IOThread is an event loop thread

● virtio-blk devices can be assigned to an IOThread

qemu -object iothread,id=iothread0

QMP command “query-iothreads”

● Returns: [{ “id”: “iothread0”, “thread-id”: 3134 }]

● Use “thread-id” for host CPU affinity

Supported in libvirt 1.2.8+

KVM FORUM 2014 | STEFAN HAJNOCZI9

IOThread CPU affinity x-data-plane=on 1:1 mode

Classic -device virtio-blk-pci,x-data-plane=on:

● 1 IOThread per device

● Makes sense with fewer devices than host CPUs

iothread#0

cpu

iothread#1

cpu

disk disk

Host hardware

QEMU
(userspace)

KVM FORUM 2014 | STEFAN HAJNOCZI10

IOThread CPU affinity N:M mapping

Host CPU affinity N:M mapping:

● 1 IOThread per host CPU

● Distribute devices across IOThreads

iothread#0

cpu

iothread#1

cpu

disk disk disk disk

Host hardware

QEMU
(userspace)

KVM FORUM 2014 | STEFAN HAJNOCZI11

virtio-blk dataplane with IOThread

IOThread

ioeventfd

irqfd

Guest
doing

virtio-blk I/O

virtqueue kick

interrupt injection
BlockDriverState

QEMU main loop and global mutex are not involved

QEMU block layer used inside of IOThread

IOThread runs an AioContext event loop

KVM FORUM 2014 | STEFAN HAJNOCZI12

AioContext event loop

AioContext is an event loop

● File descriptor monitoring

● Timers and BHs

IOThread runs an AioContext event loop:

while (running) {

 aio_context_acquire(context);

 aio_poll(context); /* can block waiting for events */

 aio_context_release(context);

}

KVM FORUM 2014 | STEFAN HAJNOCZI13

AioContext acquire/release

Another thread may need to access shared resource

aio_context_acquire(context);

...access shared resource...

aio_context_release(context);

If AioContext is in use by IOThread loop, the loop is
automatically “kicked” so we can acquire

BlockDriverState is protected by AioContext acquire

KVM FORUM 2014 | STEFAN HAJNOCZI14

How block layer was made IOThread-compatible

Previously: Block layer ran under global mutex

Now: BlockDriverState is bound to AioContext

● bdrv_set_aio_context(bs, new_aio_context)

Rules:

● Acquire AioContext before accessing bs

● Creating/deleting BlockDriverState must be done
from main loop – bdrv_states protected by global
mutex

● Lock ordering – only main loop may acquire
AioContext arbitrarily

KVM FORUM 2014 | STEFAN HAJNOCZI15

Attaching and detaching from AioContext

BlockDriverState can be migrated to a new AioContext
at run-time

● e.g. dataplane mode is enabled/disabled

Typical .bdrv_aio_context_attach/detach(...):

● Add/remove file descriptors from AioContext

● Add/remove timers from AioContext

● Ensure that BHs are not pending in old AioContext

KVM FORUM 2014 | STEFAN HAJNOCZI16

Using the same approach for other subsystems

Do you need to put I/O into an IOThread, but allow
main loop to access the resource safely?

Use AioContext!

KVM FORUM 2014 | STEFAN HAJNOCZI17

Thread-safe guest memory access

Emulated devices use DMA or guest memory access

Hence guest memory access must be thread-safe

Thread-safe today:

● Memory regions can be acquired/released

● Guest RAM can be mapped

Missing today:

● Dirty bitmap (for live migration)

● Recursive memory dispatch (i.e. device-to-device)

KVM FORUM 2014 | STEFAN HAJNOCZI18

Dirty bitmap for guest memory

Live migration tracks dirty guest memory pages

Devices must mark written pages dirty

Live migration will transfer them to the destination host

ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]

Currently access is protected by global mutex

KVM FORUM 2014 | STEFAN HAJNOCZI19

Making dirty bitmap thread-safe

(Optimistic on this but have not written code yet)

Convert bitmap ops to atomics:

set_dirty() -> atomic_or(&bitmap[i], val)

test_and_clear_dirty() -> atomic_xchg(&bitmap[i], 0)

get_dirty()* -> atomic_mb_read(&bitmap[i])

* This may be used in non-atomic fashion by caller,
may need to convert to fetch_and_set_dirty() or
test_and_set_dirty()

KVM FORUM 2014 | STEFAN HAJNOCZI20

Recursive memory dispatch

Problem: Address space can contain memory-
mapped I/O registers, so device DMA can dispatch to
a different device!

(Not all architectures may support this but some do)

Example: SCSI disk READ command DMAs to
graphics card PCI BAR

...and

● SCSI disk is attached to iothread#0

● Graphics card is attached to iothread#1

KVM FORUM 2014 | STEFAN HAJNOCZI21

Lock ordering problem for recursive dispatch

Currently in SCSI disk's iothread#0 context,

need to access graphics card's iothread#1 context.

If multiple devices do this at the same time there are
lock ordering problems -> deadlock!

Solution: Release iothread#0 before acquiring
iothread#1, and re-acquire iothread#0 when finished.

...easier said than done!

KVM FORUM 2014 | STEFAN HAJNOCZI22

Multiqueue block layer

Host kernel now supports block devices with multiple
request queues

● Improves SMP scalability

virtio-blk will support multiple virtqueues

How can QEMU avoid becoming the bottleneck?

KVM FORUM 2014 | STEFAN HAJNOCZI23

Multiqueue block layer in QEMU

virtqueue

cpu

vq

cpu

vq

cpu

vq#1

cpu

vq#2

cpu

Today No QEMU multiqueue QEMU multiqueue

BlockDriverState requires AioContext acquire

For raw images it should be cheap to dispatch I/O

Image formats (qcow2) and storage features may
restrict multiqueue

KVM FORUM 2014 | STEFAN HAJNOCZI24

Multiqueue hack for raw image files

Start with dataplane code, lock per-device virtio state

For raw image files only:

● Open multiple BlockDriverStates for the same file

● Bind virtio-blk-pci device to the BDSes

● Run each device in a separate IOThread

Problem: Does not support image formats and breaks
if snapshots/resize/etc operations are performed.

KVM FORUM 2014 | STEFAN HAJNOCZI25

Breaking up BlockDriverState for multiqueue?

Per-disk state
and

Queue state

Per-queue state

BlockDriverState

BlockDriverState Per-disk state

BlockQueue

KVM FORUM 2014 | STEFAN HAJNOCZI26

Questions?

Email: stefanha@redhat.com

Blog: http://blog.vmsplice.net/

IRC: stefanha on #qemu irc.oftc.net

mailto:stefanha@redhat.com
http://blog.vmsplice.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

