Optimizing for NVMe™
Drives
The 10 Microsecond Challenge

Stefan Hajnoczi
stefanha@redhat.com

What are NVM Express™ drives?

» Standard PCle interface for Solid State Disks
(SSDs)

» Hardware available from multiple vendors

EXPRESS &

» Standard Linux driver

» Specification available at

https:/nvmexpress.orq/

https://nvmexpress.org/

/O Latency

|/O Latency is the time to
perform a request. Drive spec 1 O | IS 1 ; | IS

sheets report "“QD1" |
) Read & write . Write
benchmarks, which means 1
o _ Intel® Optane™ SSD DC P4800X - Samsung 970 EVO Plus NVMe M.2 SSD
request in flight at a time.
Enterprise SSD - Consumer SSD
Latency varies widely between :
drives, some are 10-20x slower!
Sources:
https:/www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-ssd-series/optane-dc-p4800x-series/p4800x-750gb-aic.html ‘ Red Hat

https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-ssd-series/optane-dc-p4800x-series/p4800x-750gb-aic.html
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-970-evo-plus-nvme-m-2-500gb-mz-v7s500b-am/

“Latency Numbers Every
Programmer Should Know”

Based on a slide by Jeff Dean

These are not exact values but

they are good for comparison.

Sources:
2012 data - https;/qist.github.com/sergekukharev/ccdd49d23a5078f108175dc71ad3c06¢
2020 data - https://colin-scott.github.io/personal website/research/interactive latency.html

Latency Unit
L2 cache reference 4 ns
Main memory reference 100 ns
Compress 1KB with Zippy 2 us
SSD Random Read 10 us
Spinning disk seek 2 ms
Packet roundtrip CASNL 150 ms

https://gist.github.com/sergekukharev/ccdd49d23a5078f108175dc71ad3c06c
https://colin-scott.github.io/personal_website/research/interactive_latency.html

IOPS (x1000)

1000

750

500

250

IOPS vs Latency is a reciprocal

When latency is small, IOPS can be misleading

10

Latency (us)

15

20

>

|/O Operations Per Second (IOPS) at QD1is

Runtime / Latency

IOPS improves much less when latency is

reduced 20—18us than 4—2us

“IOPS increased by 10k” isn't enough
information to know how much latency was

reduced

NVMe drives can be 10us or less, prefer
latency to IOPS when comparing

performance

Overhead vs Latency

When hardware latency decreases, software overhead grows

B Software [Hardware
Same software, faster hardware 5

5% — 33% -

50
Software overhead

Latency (us)

25

Software improvements required to preserve low

overhead 0

Slow Disk

Fast Disk

What does this mean?

» Re-examine guest and host software stack
» Rethink architecture because hardware is so much faster

» Micro-optimizations that had little effect are interesting now

The 10 Microsecond Challenge

/O Request
Lifecycle

Simplified Model

vCPU RAM Two messages:
> Submit (vVCPU—Device)
Tell device to perform I/O request
type: READ
Iba: 0x40100 » Complete (Device—vCPU)
nblocks: 16
data: Tell vCPU that I/O request has finished
v Device
.
Submit . .
Key choices affecting software overhead:
Complete > Submission mechanism
-

» Completion mechanism

result: SUCCESS J

10

Focus on QD1 for Latency

Latency is just one performance factor, but a fundamental one

Request parallelism and batching can hide poor latency

Let's optimize latency first before those other factors
Latency-sensitive applications are most affected by latency

Need to complete a request before continuing
Measure QD1 - only 1request queued at a time
Use small block size (4KB) to expose submission/completion latency
More perspectives:

Comparing Performance of NVMe Hard Drives in K\VM, Baremetal, and Docker Using Fio and
SPDK for Virtual Testbed Applications by Mauricio Tavares at KVM Forum 2020

Storage Performance Review for Hypervisors by Felipe Franciosi at KVM Forum 2019

‘ RedHat

n

>

| 2

Notification Mechanisms

Eventfd - file descriptor
Read file descriptor to reset counter
Coalesces multiple notifications
Relies on kernel scheduler to wake threads
Used by VFIO interrupts, kvm.ko ioeventfd & irgfd, Linux AlO, io_uring

Polling - busy wait
Peek at memory location
Consumes CPU cycles
Used by QEMU AioContext, kvm ko haltpoll_ns, cpuidle-haltpoll, Linux iopoll, DPDK & SPDK

‘ RedHat

PCl Device
Assignment

VFIO PCI Device Assignment

» Guest runs device driver for physical PCl device

» Low overhead thanks to hardware support:
BAR access - memory-mapped into guest
IRQs - injected directly into running guest
DMA - accesses guest RAM via OMMU

» Pro: Competes with bare metal performance

» Cons:
Limited live migration & software features
Guests may be tied to physical hardware

13 - PCl device is dedicated to 1guest

Guest Kernel

A
Posted
Interrupts
Host Kernel
Memory (Bypassed)
Mapped
BARs
NVMe drive

14

Configuring PCI Device Assignment

<hostdev mode='subsystem' type='pci' managed='yes'>
<source>
<address domain='0x0000' bus='0x5e' slot='0x00' function='0x0'/>
</source>

</hostdev>

Links:
https:/libvirt.org/formatdomain.html#usb-pci-scsi-devices

https://libvirt.org/formatdomain.html#usb-pci-scsi-devices

NUMA Topology

PO

P1

P2

P3

» Memory access fastest on local node

» Cross-node accesses are slower

RAMO

RAMI

> Includes L1/L2/L3 cache and main memory

» CPUs and PCI devices affected

NVMe NIC

NodeO

Nodel

> Tools: numactl and Istopo
» Monitoring: perf counters for CPU cross-node accesses

» More info, see Dario Faggioli's Virtual Topology for

2-Node NUMA System

Virtual Machines: Friend or Foe? KVVM Forum 2020

presentation

‘ RedHat

NUMA Tuning

<cputune>

n

<vcpupin vcpu="0" cpuset="1"/>
<emulatorpin cpuset="2"/>
<iothreadpin iothread="1" cpuset="3"/>
</cputune>
<numatune>

<memnode cellid="0" mode="strict”
nodeset="1"/>

</numatime>

Links:
https:/libvirt.org/formatdomain.html#cpu-tuning
https:/libvirt.org/formatdomain.html#numa-node-tuning

Default NUMA behavior may be suboptimal
Manual control of NUMA is possible through pinning

Pinning vCPU, emulator, and IOThreads produces

more consistent performance results

Supported in libvirt domain XML

https://libvirt.org/formatdomain.html#cpu-tuning
https://libvirt.org/formatdomain.html#numa-node-tuning

17

vCPU |IOThread

/]

NUMA Tuning Example

|
v ¥
PO P1 P2 P3
RAMO RAMT
NVMe NIC
NodeO Nodel

2-Node NUMA System

1-vCPU guest

Pin vCPU to PO

Guest RAM only uses memory from NodeO
Pin IOThread to P1

Why NodeO? Proximity to NVMe and NIC.

Adding another guest makes the decision harder, it

depends on the workloads

cpuidle-haltpoll

» Halting a vCPU involves a vmexit and halting the physical CPU
Waking up a halted CPU has a latency cost

» cpuidle-haltpoll: When a guest vCPU is ready to halt...
Busy wait a little in case a task becomes schedulable
Decreases |/O completion latency

» kvm.ko haltpoll_ns is a similar host-side mechanism, but

cpuidle-haltpoll avoids the HALT vmexit entirely

Links:
https://www.kernel.org/doc/html/latest/virt/quest-halt-polling.html

https://www.kernel.org/doc/html/latest/virt/guest-halt-polling.html

Configuring cpuidle-haltpoll tivirtéio

> Requires Linux 5.4 in guest

<cpu mode="host-passthrough' check='none'></cpu>
<features>
<kvm>
<hint-dedicated state="'on'/>
<poll-control state='on’/>
</kvm>

</features>

Links:
https://www.kernel.org/doc/html/latest/virt/quest-halt-polling.html

https://www.kernel.org/doc/html/latest/virt/guest-halt-polling.html

20

PCI Device Assignment without Linux iopoll

R - randread, W - randwrite, ioengine=pvsync2, QD1

B Baremetal [VFIO [VFIO cpuidle-haltpoll

100 -
75—
I
o}
B
Q0
L
o
(@]
S 50
=)
o
o
x
n
o
o 25
0

R 4K R 16K R 32K R 64K R 128K W 4K W 16K W 32K

W 64K

W 128K

21

NVMe Linux iopoll support

Linux nvme.ko driver supports several queue types:
read/write/poll

Poll queues don't use a completion interrupt
Application must set RWF_HIPRI request flag

Kernel busy waits by calling struct blk_mq_ops->poll() driver

function
Improves completion latency more than cpuidle-haltpoll

Module parameter: nvme.poll_queues=4

22

125

100

75

50

IOPS (x1000) More is better—

25

R 4K

R 16K

PCI Device Assignment with Linux iopoll

R - randread, W - randwrite, ioengine=pvsync2, QD1

B Baremetal [VFIO

R 32K R 64K R 128K W 4K W 16K

W 32K

W 64K

W 128K

virtio-blk

Red Hat

24

>

>

>

virtio-blk
Optimized paravirtualized storage controller

Enable multi-queue

Completion interrupt handled by same vCPU that submitted
request

Enables full Linux blk-mq behavior

New default: num-queues=num-vcpus QEMUS52

Enable packed virtqueues

More efficient virtqueue memory layout

<disk type="'

<driver

<source
<target
</disk>

25 Links:
https:/libvirt.org/formatdomain.html#hard-drives-floppy-disks-cdroms

Configuring virtio-blk

file' device='disk'>

name="'qgemu' type='raw'

cache="none’ io='native’ iothread="1
queues='4"' packed='on’'/>
file='/dev/nvmeon1' />

dev="'vda' bus='virtio'/>

’

https://libvirt.org/formatdomain.html#hard-drives-floppy-disks-cdroms

26

virtio-blkO || virtio-blkl || virtio-blk?2
iothreadO iothreadi

|OThreads

» Dedicated threads that perform device
emulation & |/O

» Gives users control over CPU pinning of devices
» Adaptive polling event loop for lower latency
> N:Tdevices to IOThread mapping

» Pin IOThread to NUMA node of the NVMe drive
and guest RAM

27

Links:
https:/libvirt.org/formatdomain.html

Configuring IOThreads

<iothreads>4</iothreads>
<cputune>
<iothreadpin iothread="1" cpuset="10"/>

</cputune>

<devices>
<disk type='file' device='disk'>
<driver name='qemu' iothread="1" .. />

https://libvirt.org/formatdomain.html#hard-drives-floppy-disks-cdroms

28

QEMU Userspace NVMe Driver

Userspace driver added in QEMU 212 by Fam
Zheng and Paolo Bonzini, additional commands
added by Maxim Levitsky

PCl device is assigned to a single guest

Live migration and QEMU block layer features are

available!

Non-x86 arch support, multi-queue, and more in
development by Philippe Mathieu-Daudé and
Eric Auger

virtio-blk emulation

Image formats, throttling,
migration, etc

NVMe userspace driver

QEMU block layer

NVMe PCI device

29

Configuring the NVMe Userspace Driver

<disk type='nvme' device='disk'>
<driver name='gemu' type='raw'/>
<source type='pci' managed='yes' namespace='1">
<address domain="'0x0000' bus='0x01"' slot='0x00'
function='0x0"/>
</source>
<target dev='vda' bus='virtio'/>
</disk>

Links:
https:/libvirt.org/formatdomain.html#hard-drives-floppy-disks-cdroms

https://libvirt.org/formatdomain.html#hard-drives-floppy-disks-cdroms

Polled Queues in Userspace NVMe Driver PrOToTYpE

NVMe supports interrupts and polled-mode queues
Upstream QEMU only creates queues with interrupts
Patch adds polled-mode queues

Requires io_uring so QEMU can continue to monitor file descriptors while polling for

extended periods of time

Avoids starving file descriptors that are being monitored

https://github.com/stefanha/qemu/commits/virtqueue-mq-scalability

31

AIO fast path prororvee

> Re-introduce asynchronous QEMU block

driver interface

» Skips coroutine-based |/O request queuing
in QEMU

> Only possible when software features like
disk image formats, |/O throttling, storage

migration, etc are inactive

> Similar ideas in 2014 by Ming Lei, Kevin Wolf,

Paolo Bonzini

Link:
https:/github.com/stefanha/gemu/commits/virtqueue-mg-scalability

virtio-blk emulation

Full request
processing

NVMe userspace driver

https://github.com/stefanha/qemu/commits/virtqueue-mq-scalability

virtio-blk Linux iopoll ProToTYpPE

» Userspace sets RWF_HIPRI request flag
» Kernel busy waits by calling struct blk_mqg_ops->poll() driver function
» Few applications use RWF_HIPRI but it's a good proof-of-concept

» Add .poll() function to virtio_blk.ko that disables virtqueue used

buffer notifications

> Prototype only supports QDI

32 Link:
https:/github.com/stefanha/linux/commits/virtio-blk-io poll

https://github.com/stefanha/linux/commits/virtio-blk-io_poll

IOPS (x1000) More is better—

virtio-blk vs bare metal
4K randread, ioengine=pvsync2, QD1

125 120005

105752

100 94367

78736 79631

75

55216

50 46424 46876

21831

25

Bare metal (no iopoll) file,aio=native +lOThread +multi-queue +nvme:// +iopoll +pollqueues +fastpath Bare metal (iopoll)

& RedHat

34

gemu-storage-daemon Qemus2

New QEMU tool for running storage-related work

in a separate process by Kevin Wolf
vhost-user-blk server by Coiby Xu

Share an NVMe drive between multiple guests

Available in gemu.git, more optimizations planned

Bonus: many use cases possible with NBD and

FUSE exports, block jobs, etc

Guest 1

Guest 2

gemu-storage-daemon

NVMe drive

35

Configuring gemu-storage-daemon

driveO 16G

drivel 32G

gemu-storage-daemon \
--blockdev nvme, node-name=nvmeo, ...

--blockdev raw,node-name=drive®, file=nvme®, offset=0, size=S_16G
--export vhost-user-blk, id=vhost-user-blk0, node-name=drive0, \
addr.type=unix, addr.path=/tmp/vhost-user-blke.sock

\

--blockdev raw,node-name=drivel, file=nvme®, offset=S_16G, size=$_32G

--export vhost-user-blk,id=vhost-user-blk@, node-name=driveg, \
addr.type=unix, addr.path=/tmp/vhost-user-blk1.sock

36

Storage Performance Development Kit (SPDK)

Polling architecture

vhost-user-blk was created for SPDK by
Changpeng Liu

Alternative to gemu-storage-daemon with a lot in

common:
NUMA and QEMU tuning is the same

Guest optimizations benefit SPDK & QEMU

Overlap in developer communities

Link:
https./spdk.io/

Guest 1

Guest 2

SPDK

NVMe drive

https://spdk.io/

37

What about non-NVMe use cases?

PCI Device Assignment works for other storage controllers too

cpu-idle haltpoll, virtio-blk iopoll, etc help non-NVMe cases

See Stefano Garzarella's Speeding Up VM's |/O Sharing Host's io_uring Queues With Guests KVM Forum
2020 presentation

38

Future Direction

Short Term

e AlO fast path & polled NVMe queues in QEMU
e Guest completion polling

Long Term

e No software in fast path, application direct to hardware

39

Summary

How to optimize for NVMe drives

Configuration & tuning
NUMA, cpuidle-haltpoll, IOThreads

Consider PCI Device Assignment
Minimal overhead, limited live migration & software features

Virtio-blk with QEMU Userspace NVMe Driver
Userspace NVMe driver boosts performance

gemu-storage-daemon for Sharing Drives
Share NVMe drive between multiple guests

Th a n k yO u (§) blogvmsplice.net

E stefanha@redhat.com
See QEMU blog for more resources on storage:

I;l_j stefanha on #gemu IRC

Benchmark Ansible playbooks available here:

https://www.qemu.org/blog/category/storage/index.html
https://github.com/stefanha/qemu-perf/commits/kvm-forum-2020

4

Benchmark Configuration

Intel® Xeon® Silver 4214 CPU @ 2.20GHz
2 sockets x 12 cores x 2 hyperthreads
32 GB RAM
Host kernel: 5.7.7-100fc31.x86_64
Guest kernel: 5.5.0
QEMU: 4.2.0+

NVMe: Intel Optane P4800X (8086:2/701)

S cat fio.job
[global]
ioengine=pvsync?2
hipri=T1

direct=1
runtime=60
ramp_time=5
clocksource=cpu
cpus_allowed=2
[job1]

