
The 10 Microsecond Challenge

Optimizing for NVMe™
Drives

Stefan Hajnoczi

stefanha@redhat.com

1

▸ Standard PCIe interface for Solid State Disks

(SSDs)

▸ Hardware available from multiple vendors

▸ Standard Linux driver

▸ Specification available at

https://nvmexpress.org/

2

What are NVM Express™ drives?

https://nvmexpress.org/

I/O Latency

3
Sources:
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-ssd-series/optane-dc-p4800x-series/p4800x-750gb-aic.html
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-970-evo-plus-nvme-m-2-500gb-mz-v7s500b-am/

I/O Latency is the time to

perform a request. Drive spec

sheets report “QD1”

benchmarks, which means 1

request in flight at a time.

Latency varies widely between

drives, some are 10-20x slower!

10µs 17µs
Read & write

Intel® Optane™ SSD DC P4800X

Enterprise SSD

Write

Samsung 970 EVO Plus NVMe M.2 SSD

Consumer SSD

https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-ssd-series/optane-dc-p4800x-series/p4800x-750gb-aic.html
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-970-evo-plus-nvme-m-2-500gb-mz-v7s500b-am/

4
Sources:
2012 data - https://gist.github.com/sergekukharev/ccdd49d23a5078f108175dc71ad3c06c
2020 data - https://colin-scott.github.io/personal_website/research/interactive_latency.html

Latency Unit

L2 cache reference 4 ns

Main memory reference 100 ns

Compress 1KB with Zippy 2 µs

SSD Random Read 10 µs

Spinning disk seek 2 ms

Packet roundtrip CA⇆NL 150 ms

“Latency Numbers Every
Programmer Should Know”

Based on a slide by Jeff Dean

These are not exact values but

they are good for comparison.

https://gist.github.com/sergekukharev/ccdd49d23a5078f108175dc71ad3c06c
https://colin-scott.github.io/personal_website/research/interactive_latency.html

▸ I/O Operations Per Second (IOPS) at QD1 is

Runtime / Latency

▸ IOPS improves much less when latency is

reduced 20→18µs than 4→2µs

▸ “IOPS increased by 10k” isn’t enough

information to know how much latency was

reduced

▸ NVMe drives can be 10µs or less, prefer

latency to IOPS when comparing

performance
5

When latency is small, IOPS can be misleading

IOPS vs Latency is a reciprocal

Same software, faster hardware

5% → 33%
Software overhead

Software improvements required to preserve low

overhead

6

Overhead vs Latency
When hardware latency decreases, software overhead grows

7

▸ Re-examine guest and host software stack

▸ Rethink architecture because hardware is so much faster

▸ Micro-optimizations that had little effect are interesting now

The 10 Microsecond Challenge

What does this mean?

8

I/O Request
Lifecycle

9

Simplified Model

type: READ
lba: 0x40100
nblocks: 16
data:

result: SUCCESS

vCPU

Device

RAM

Submit

Complete

Two messages:

▸ Submit (vCPU→Device)

Tell device to perform I/O request

▸ Complete (Device→vCPU)

Tell vCPU that I/O request has finished

Key choices affecting software overhead:

▸ Submission mechanism

▸ Completion mechanism

10

Focus on QD1 for Latency
▸ Latency is just one performance factor, but a fundamental one

･ Request parallelism and batching can hide poor latency

･ Let’s optimize latency first before those other factors

▸ Latency-sensitive applications are most affected by latency

･ Need to complete a request before continuing

▸ Measure QD1 - only 1 request queued at a time

▸ Use small block size (4KB) to expose submission/completion latency

▸ More perspectives:

･ Comparing Performance of NVMe Hard Drives in KVM, Baremetal, and Docker Using Fio and

SPDK for Virtual Testbed Applications by Mauricio Tavares at KVM Forum 2020

･ Storage Performance Review for Hypervisors by Felipe Franciosi at KVM Forum 2019

11

Notification Mechanisms

▸ Eventfd - file descriptor

･ Read file descriptor to reset counter

･ Coalesces multiple notifications

･ Relies on kernel scheduler to wake threads

･ Used by VFIO interrupts, kvm.ko ioeventfd & irqfd, Linux AIO, io_uring

▸ Polling - busy wait

･ Peek at memory location

･ Consumes CPU cycles

･ Used by QEMU AioContext, kvm.ko haltpoll_ns, cpuidle-haltpoll, Linux iopoll, DPDK & SPDK

12

PCI Device
Assignment

13

▸ Guest runs device driver for physical PCI device

▸ Low overhead thanks to hardware support:

･ BAR access - memory-mapped into guest

･ IRQs - injected directly into running guest

･ DMA - accesses guest RAM via IOMMU

▸ Pro: Competes with bare metal performance

▸ Cons:

･ Limited live migration & software features

･ Guests may be tied to physical hardware

･ PCI device is dedicated to 1 guest

VFIO PCI Device Assignment

Guest Kernel

NVMe drive

Host Kernel
(Bypassed)

Posted
Interrupts

Memory
Mapped
BARs

14

<hostdev mode='subsystem' type='pci' managed='yes'>

<source>

 <address domain='0x0000' bus='0x5e' slot='0x00' function='0x0'/>

 </source>

</hostdev>

Configuring PCI Device Assignment

Links:
https://libvirt.org/formatdomain.html#usb-pci-scsi-devices

https://libvirt.org/formatdomain.html#usb-pci-scsi-devices

15

▸ Memory access fastest on local node

▸ Cross-node accesses are slower

▸ Includes L1/L2/L3 cache and main memory

▸ CPUs and PCI devices affected

▸ Tools: numactl and lstopo

▸ Monitoring: perf counters for CPU cross-node accesses

▸ More info, see Dario Faggioli’s Virtual Topology for

Virtual Machines: Friend or Foe? KVM Forum 2020

presentation

NUMA Topology

P0 P1

NVMe NIC

RAM0

Node0

P2 P3

RAM1

Node1

2-Node NUMA System

16
Links:
https://libvirt.org/formatdomain.html#cpu-tuning
https://libvirt.org/formatdomain.html#numa-node-tuning

▸ Default NUMA behavior may be suboptimal

▸ Manual control of NUMA is possible through pinning

▸ Pinning vCPU, emulator, and IOThreads produces

more consistent performance results

▸ Supported in libvirt domain XML

NUMA Tuning

<cputune>

 <vcpupin vcpu=”0” cpuset=”1”/>

 <emulatorpin cpuset=”2”/>

 <iothreadpin iothread=”1” cpuset=”3”/>

</cputune>

<numatune>

 <memnode cellid=”0” mode=”strict”
 nodeset=”1”/>

</numatime>

https://libvirt.org/formatdomain.html#cpu-tuning
https://libvirt.org/formatdomain.html#numa-node-tuning

17

▸ 1-vCPU guest

▸ Pin vCPU to P0

▸ Guest RAM only uses memory from Node0

▸ Pin IOThread to P1

▸ Why Node0? Proximity to NVMe and NIC.

▸ Adding another guest makes the decision harder, it

depends on the workloads

NUMA Tuning Example

P0 P1

NVMe NIC

RAM0

Node0

P2 P3

RAM1

Node1

2-Node NUMA System

vCPU IOThread

18
Links:
https://www.kernel.org/doc/html/latest/virt/guest-halt-polling.html

▸ Halting a vCPU involves a vmexit and halting the physical CPU

･ Waking up a halted CPU has a latency cost

▸ cpuidle-haltpoll: When a guest vCPU is ready to halt…

･ Busy wait a little in case a task becomes schedulable

･ Decreases I/O completion latency

▸ kvm.ko haltpoll_ns is a similar host-side mechanism, but

cpuidle-haltpoll avoids the HALT vmexit entirely

cpuidle-haltpoll

https://www.kernel.org/doc/html/latest/virt/guest-halt-polling.html

19
Links:
https://www.kernel.org/doc/html/latest/virt/guest-halt-polling.html

▸ Requires Linux 5.4 in guest

<cpu mode='host-passthrough' check='none'></cpu>

<features>

 <kvm>

 <hint-dedicated state='on'/>

 <poll-control state=’on’/>

 </kvm>

</features>

Configuring cpuidle-haltpoll libvirt 6.10

https://www.kernel.org/doc/html/latest/virt/guest-halt-polling.html

20

21

▸ Linux nvme.ko driver supports several queue types:

･ read/write/poll

▸ Poll queues don’t use a completion interrupt

･ Application must set RWF_HIPRI request flag

･ Kernel busy waits by calling struct blk_mq_ops->poll() driver

function

▸ Improves completion latency more than cpuidle-haltpoll

▸ Module parameter: nvme.poll_queues=4

NVMe Linux iopoll support

22

23

virtio-blk

24

▸ Optimized paravirtualized storage controller

▸ Enable multi-queue

･ Completion interrupt handled by same vCPU that submitted

request

･ Enables full Linux blk-mq behavior

･ New default: num-queues=num-vcpus

▸ Enable packed virtqueues

･ More efficient virtqueue memory layout

virtio-blk

QEMU 5.2

25

Configuring virtio-blk

<disk type='file' device='disk'>
 <driver name='qemu' type='raw'
 cache=’none’ io=’native’ iothread=’1’
 queues='4' packed=’on’/>
 <source file='/dev/nvme0n1'/>
 <target dev='vda' bus='virtio'/>
</disk>

Links:
https://libvirt.org/formatdomain.html#hard-drives-floppy-disks-cdroms

https://libvirt.org/formatdomain.html#hard-drives-floppy-disks-cdroms

26

▸ Dedicated threads that perform device

emulation & I/O

▸ Gives users control over CPU pinning of devices

▸ Adaptive polling event loop for lower latency

▸ N:1 devices to IOThread mapping

▸ Pin IOThread to NUMA node of the NVMe drive

and guest RAM

IOThreads

virtio-blk0

iothread0

virtio-blk1 virtio-blk2

iothread1

27

Configuring IOThreads

<iothreads>4</iothreads>
<cputune>
 <iothreadpin iothread="1" cpuset="10"/>
 …
</cputune>
<devices>
 <disk type='file' device='disk'>
 <driver name='qemu' iothread='1' … />

Links:
https://libvirt.org/formatdomain.html

https://libvirt.org/formatdomain.html#hard-drives-floppy-disks-cdroms

28

▸ Userspace driver added in QEMU 2.12 by Fam

Zheng and Paolo Bonzini, additional commands

added by Maxim Levitsky

▸ PCI device is assigned to a single guest

▸ Live migration and QEMU block layer features are

available!

▸ Non-x86 arch support, multi-queue, and more in

development by Philippe Mathieu-Daudé and

Eric Auger

QEMU Userspace NVMe Driver

virtio-blk emulation

NVMe userspace driver

Image formats, throttling,
migration, etc

QEMU block layer

NVMe PCI device

29

Configuring the NVMe Userspace Driver

<disk type='nvme' device='disk'>
 <driver name='qemu' type='raw'/>
 <source type='pci' managed='yes' namespace='1'>
 <address domain='0x0000' bus='0x01' slot='0x00'
function='0x0'/>
 </source>
 <target dev='vda' bus='virtio'/>
 </disk>

Links:
https://libvirt.org/formatdomain.html#hard-drives-floppy-disks-cdroms

https://libvirt.org/formatdomain.html#hard-drives-floppy-disks-cdroms

30

▸ NVMe supports interrupts and polled-mode queues

▸ Upstream QEMU only creates queues with interrupts

▸ Patch adds polled-mode queues

▸ Requires io_uring so QEMU can continue to monitor file descriptors while polling for

extended periods of time

･ Avoids starving file descriptors that are being monitored

Polled Queues in Userspace NVMe Driver PROTOTYPE

Link:
https://github.com/stefanha/qemu/commits/virtqueue-mq-scalability

https://github.com/stefanha/qemu/commits/virtqueue-mq-scalability

31 Link:
https://github.com/stefanha/qemu/commits/virtqueue-mq-scalability

▸ Re-introduce asynchronous QEMU block

driver interface

▸ Skips coroutine-based I/O request queuing

in QEMU

▸ Only possible when software features like

disk image formats, I/O throttling, storage

migration, etc are inactive

▸ Similar ideas in 2014 by Ming Lei, Kevin Wolf,

Paolo Bonzini

AIO fast path PROTOTYPE

virtio-blk emulation

NVMe userspace driver

Full request
processing

https://github.com/stefanha/qemu/commits/virtqueue-mq-scalability

32 Link:
https://github.com/stefanha/linux/commits/virtio-blk-io_poll

▸ Userspace sets RWF_HIPRI request flag

▸ Kernel busy waits by calling struct blk_mq_ops->poll() driver function

▸ Few applications use RWF_HIPRI but it’s a good proof-of-concept

▸ Add .poll() function to virtio_blk.ko that disables virtqueue used

buffer notifications

▸ Prototype only supports QD1

virtio-blk Linux iopoll PROTOTYPE

https://github.com/stefanha/linux/commits/virtio-blk-io_poll

33

34

▸ New QEMU tool for running storage-related work

in a separate process by Kevin Wolf

･ vhost-user-blk server by Coiby Xu

▸ Share an NVMe drive between multiple guests

▸ Available in qemu.git, more optimizations planned

▸ Bonus: many use cases possible with NBD and

FUSE exports, block jobs, etc

qemu-storage-daemon

Guest 1

NVMe drive

qemu-storage-daemon

Guest 2

QEMU 5.2

35

Configuring qemu-storage-daemon

$ qemu-storage-daemon \
 --blockdev nvme,node-name=nvme0,... \

 --blockdev raw,node-name=drive0,file=nvme0,offset=0,size=$_16G
 --export vhost-user-blk,id=vhost-user-blk0,node-name=drive0,\
 addr.type=unix,addr.path=/tmp/vhost-user-blk0.sock

 --blockdev raw,node-name=drive1,file=nvme0,offset=$_16G,size=$_32G
 --export vhost-user-blk,id=vhost-user-blk0,node-name=drive0,\
 addr.type=unix,addr.path=/tmp/vhost-user-blk1.sock

drive0 16G drive1 32G

36

▸ Polling architecture

▸ vhost-user-blk was created for SPDK by

Changpeng Liu

▸ Alternative to qemu-storage-daemon with a lot in

common:

･ NUMA and QEMU tuning is the same

･ Guest optimizations benefit SPDK & QEMU

･ Overlap in developer communities

Storage Performance Development Kit (SPDK)

Guest 1

NVMe drive

SPDK

Guest 2

Link:
https://spdk.io/

https://spdk.io/

37

▸ PCI Device Assignment works for other storage controllers too

▸ cpu-idle haltpoll, virtio-blk iopoll, etc help non-NVMe cases

▸ See Stefano Garzarella’s Speeding Up VM’s I/O Sharing Host's io_uring Queues With Guests KVM Forum

2020 presentation

What about non-NVMe use cases?

Future Direction

Short Term

● AIO fast path & polled NVMe queues in QEMU
● Guest completion polling

Long Term

● No software in fast path, application direct to hardware

38

Summary
How to optimize for NVMe drives

Configuration & tuning
NUMA, cpuidle-haltpoll, IOThreads

Consider PCI Device Assignment
Minimal overhead, limited live migration & software features

Virtio-blk with QEMU Userspace NVMe Driver
Userspace NVMe driver boosts performance

qemu-storage-daemon for Sharing Drives
Share NVMe drive between multiple guests

39

40

Thank you blog.vmsplice.net

stefanha@redhat.com

stefanha on #qemu IRC

See QEMU blog for more resources on storage:
https://www.qemu.org/blog/category/storage/index.html

Benchmark Ansible playbooks available here:
https://github.com/stefanha/qemu-perf/commits/kvm-forum-2020

https://www.qemu.org/blog/category/storage/index.html
https://github.com/stefanha/qemu-perf/commits/kvm-forum-2020

41

▸ Intel® Xeon® Silver 4214 CPU @ 2.20GHz

･ 2 sockets x 12 cores x 2 hyperthreads

▸ 32 GB RAM

▸ Host kernel: 5.7.7-100.fc31.x86_64

▸ Guest kernel: 5.5.0

▸ QEMU: 4.2.0+

▸ NVMe: Intel Optane P4800X (8086:2701)

Benchmark Configuration

$ cat fio.job

[global]

ioengine=pvsync2

hipri=1

direct=1

runtime=60

ramp_time=5

clocksource=cpu

cpus_allowed=2

[job1]

