
Next steps for out-of-process device migration

Live Migrating VFIO, vhost-user, and vfio-user Devices - Stefan Hajnoczi, Red Hat

Live Migrating VFIO, vhost-user,
and vfio-user Devices

Stefan Hajnoczi

stefanha@redhat.com

1

https://kvmforum2021.sched.com/#
mailto:stefanha@redhat.com

▸ How are devices live migrated in QEMU?

▸ Current approaches:

･ vhost-user

･ VFIO and vfio-user

▸ Supporting stateful vhost-user device migration

▸ A proposal for VFIO and vfio-user migration

･ Checking migration compatibility beforehand

･ Migrating between different implementations of a device

2

Agenda

3

How devices are live migrated in QEMU

Device state is saved on the source device and

loaded into the destination device.

Migration is transparent to the guest and

ensures continuity from the guest point of view.

Device state representation is the binary layout

of a device’s state.

Source
Device

Dest
Device

Device
State1. Save 2. Load

4

What makes up a device’s state?

Included:

▸ Register contents (PCI BAR contents, etc)

▸ Internal state needed to resume operation

(ring buffer reader index, etc)

Excluded:

▸ Device creation parameters

▸ Host-side state inaccessible to guest

static const VMStateDescription
vmstate_virtio_net_device = {
 ...
 .fields = (VMStateField[]) {
 VMSTATE_UINT8_ARRAY(mac, VirtIONet, ETH_ALEN),
 VMSTATE_STRUCT_POINTER(vqs, VirtIONet,
 vmstate_virtio_net_queue_tx_waiting,
 VirtIONetQueue),
 VMSTATE_UINT32(mergeable_rx_bufs, VirtIONet),
 VMSTATE_UINT16(status, VirtIONet),

hw/net/virtio-net.c

5

Why isn’t everything part of the device state?

Destination QEMU is launched with a full command-line so there is no need to

migrate device creation parameters or host-side state.

Destination command-line can be (a bit) different from source command-line!

$ qemu-system-x86_64 -M pc-q35-6.1,accel=kvm -m 4G ...

Source

$ qemu-system-x86_64 -M pc-q35-6.1,accel=kvm -m 4G ... -incoming tcp::1234

Destination

6

Challenges migrating out-of-process devices

1. Launching device processes, VFIO devices, etc

2. Integrating into QEMU’s live migration

workflow

3. Extensibility of the device state representation

4. Migrating between device implementations

VFIO
Device

vfio-user
Device

vhost-user
Device

QEMU

7

vhost-user migration

1. vhost-user device is stopped and QEMU takes over vrings

2. QEMU migrates VIRTIO device using common code

3. vhost-user device is started again on destination

4. Device-specific post-migration steps (e.g. virtio-net

VHOST_USER_SEND_RARP)

✅ Easy to migrate between device implementations

✅ Extensible thanks to QEMU’s vmstate infrastructure

❌ Cannot migrate stateful devices (yet?), like virtiofs

8

DBus VMState

Designed for QEMU helper processes but

could augment vhost-user live migration for

stateful devices

Saves/loads opaque data (up to 1 MB)

Alternative: define device state in VIRTIO or

vhost-user specification and integrate

save/load into vhost-user protocol

Load(in u8[] bytes) method

The method called on destination with the state to restore.

The helper may be initially started in a waiting state (with
an --incoming argument for example), and it may resume on
success.

An error may be returned to the caller.

Save(out u8[] bytes) method

The method called on the source to get the current state to be
migrated. The helper should continue to run normally.

An error may be returned to the caller.

docs/interop/dbus-vmstate.rst

9

VFIO and vfio-user migration

1. Device state is saved by QEMU by reading from

VFIO_REGION_TYPE_MIGRATION

2. Device state is loaded by QEMU by writing to

VFIO_REGION_TYPE_MIGRATION

✅ Does not require per-device QEMU modifications

❌ Implementor needs to solve extensibility and compatibility issues

❌ It may not be possible to migrate between implementations

10

Can we check compatibility before migrating?

A cluster scheduler needs to pick a machine capable of being a migration

destination.

Options:

1. Optimistically migrate and try another machine if it fails.

➢ Slow and consumes resources

2. Use an algorithm to automatically check compatibility.

➢ Complex

3. Manually tag machines for cluster scheduler

➢ Error-prone

11

Can we migrate between two implementations of a device?

Compatibility between two devices requires:

▸ Same device type (e.g. virtio-net-pci)

▸ Same device creation parameters

▸ Same device state representation

Source could be a software device, destination could be a

hardware device.

12

Proposal for VFIO and vfio-user migration
Definitions

Device model Unique domain name + path (ASCII string), e.g. qemu.org/virtio-net-pci

Version Migration compatibility identifier (ASCII string), e.g. v1

Compatibility check steps

1. Destination supports source device model.
2. Destination supports source version.

Migration steps

1. Find existing or instantiate new destination device for given device model and version.
2. Save device state on source device.
3. Load device state on destination device.

13

Upgrading/downgrading versions

Device state representations are sometimes changed to

fix bugs.

If the change is migration compatible then a new version

string is not necessary. Otherwise:

1. Try to set version string on running device to an

older/newer one.

2. The device will refuse if the version change would not

be compatible (e.g. changes the guest-visible

hardware interface).

v3 (broken)

v4 (fixed)

QEMU
6.1

QEMU
6.2

14

How to integrate it

Proposal includes interface for querying and setting device model

and version:

▸ VFIO mdev sysfs attributes

▸ vfio-user command-line options

This allows management tools to migrate VFIO and vfio-user

devices without device-specific knowledge.

15

Migration parameters spec in “[RFC v3] VFIO Migration” (https://lists.gnu.org/archive/html/qemu-devel/2020-11/msg02620.html)

Evaluating this proposal

Pros:

▸ Migration compatibility checking without

attempting migration.

▸ Ability to upgrade/downgrade versions.

▸ Migration between implementations.

▸ Easier for implementors than rolling their own

device state representations for popular

device models.

▸ Simple concept and not much overhead for

implementors and tooling developers.

Disadvantages:

▸ Does it support everything you need?

▸ No device creation parameter customization,

they are baked into the version to keep things

simple (see footnote for more complex

alternative).

https://lists.gnu.org/archive/html/qemu-devel/2020-11/msg02620.html

16

Future directions

vhost-user

▸ Add support for stateful devices (probably in conjunction with vDPA

migration)

VFIO and vfio-user

▸ Finish VFIO migration proposal discussion & implement it in tooling

(libvirt, mdevctl, etc).

▸ Develop device state representations for popular devices so that

multiple implementations can migrate between each other.

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

17

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

