
INTERNAL ONLY | PRESENTER NAME1

VIRTIO 1.0
Paravirtualized I/O for KVM and beyond

Stefan Hajnoczi <stefanha@redhat.com>
8th February 2014

INTERNAL ONLY | PRESENTER NAME2

What we're going to cover

How VIRTIO 1.0 works

You want to:

● Understand paravirtualized I/O

● Design custom devices

● Get familiar before tackling the spec/code

Not covering every VIRTIO 1.0 spec change

See Rusty's linuxconf.au talk: http://goo.gl/wd9Xfp

http://goo.gl/wd9Xfp

INTERNAL ONLY | PRESENTER NAME3

What is virtio?

“Straightforward, efficient, standard and extensible
mechanism for virtual devices”

● Network card, SCSI controller, etc

Designed for situations where accessing device is
expensive, device accessing memory is cheap

● Real hardware is the opposite!

Like USB class-compliant devices, a standard driver
means compatibility across OSes and hypervisors

INTERNAL ONLY | PRESENTER NAME4

What's happening in virtio land?

VIRTIO
0.9.5

VIRTIO
1.0

Community (led by Rusty Russell)

Independent, informal document

QEMU, lguest, Linux, FreeBSD, VirtualBox

OASIS Committee (chaired by Rusty Russell)

Formal process, formal document

QEMU, lguest, Linux, FreeBSD, VirtualBox,

Xen, etc

INTERNAL ONLY | PRESENTER NAME5

Virtio architecture

PCI MMIO CCW Transports

Virtqueue
Feature

bits
Config
space

Core device model

net scsi ... Device types

Three layers defined by virtio:

INTERNAL ONLY | PRESENTER NAME6

Device lifecycle and device status field

Reset Ack Driver

Features
OK

Driver
OK

Select
features

Find matching driver

Check device
accepted features

Failed

... Reset

INTERNAL ONLY | PRESENTER NAME7

Feature bit negotiation

The feature bit field enables extensibility

● New features can be added to spec in future

Steps for negotiation:

1.Device shows all supported feature bits

2.Driver selects subset of features it supports

3.Driver sets FEATURES_OK in status field

4.Device leaves FEATURES_OK set if ok

INTERNAL ONLY | PRESENTER NAME8

Configuration space

Contains device parameters

● Read/write

● 32-bit atomic access (careful with bigger accesses)

● Version counter for consistent >32-bit reads

● No consistent >32-bit writes!

● Device notifies driver via interrupt on update

Consider using a config virtqueue for complex device
configuration or error handling.

INTERNAL ONLY | PRESENTER NAME9

Virtqueues and the device model

Devices have virtqueues to transfer data buffers

Driver adds buffer, device processes and returns it

Buffers may be:

● Scatter-gather lists (multiple memory regions)

● Handled out-of-order by device, if appropriate

Interrupt notifies driver of buffer completion

INTERNAL ONLY | PRESENTER NAME10

Virtqueue programming interface example

void

virtqueue_add_sgs(struct virtqueue *vq,

 struct scatterlist sg[],

 unsigned int out_sgs,

 unsigned int in_sgs,

 void *data, gfp_t gfp);

void *virtqueue_get_buf(

 struct virtqueue *vq,

 unsigned int *len);

INTERNAL ONLY | PRESENTER NAME11

Virtqueue memory layout (aka vring)

Index Addr Len Flags Next

0

1

...

Descriptor table

Available ring Used ring

... ...

Device Driver
DeviceDriver

Driver allocates vring and configures device with its address:

INTERNAL ONLY | PRESENTER NAME12

Adding buffers to the vring

Index Addr Len Flags Next

0 0x8000000000000000 4096 NEXT 1

1 0x8000000000040000 128 WRITE 0

...

Descriptor table

Available ring Used ring

0

Device Driver DeviceDriver

Driver puts scatter-gather list into descriptor table, adds head
index to available ring, and then kicks device.

INTERNAL ONLY | PRESENTER NAME13

Returning completed buffers to the vring

Index Addr Len Flags Next

0 0x8000000000000000 4096 NEXT 1

1 0x8000000000040000 128 WRITE 0

...

Descriptor table

Available ring Used ring

0 ... 0 ...

Device Driver DeviceDriver

Device adds head index to used ring and then notifies driver.

INTERNAL ONLY | PRESENTER NAME14

Example device: virtio-scsi

Virtqueues:

0.Control

1.Events

2.Requests

3.Requests

4.... (multiqueue)

Configuration space:

struct virtio_scsi_config {
 le32 num_queues;
 le32 seg_max;
 le32 max_sectors;
 le32 cmd_per_lun;
 le32 event_info_size;
 le32 sense_size;
 le32 cdb_size;
 le16 max_channel;
 le16 max_target;
 le32 max_lun;
};

struct virtio_scsi_req_cmd {
 u8 lun[8]; le64 id;
 ...
 char cdb[cdb_size];
 char dataout[];
 ...
};

INTERNAL ONLY | PRESENTER NAME16

More information

VIRTIO 1.0 draft: http://goo.gl/BQ1Kbu

Mailing list: virtio-dev@lists.oasis-open.org

QEMU virtio code: hw/virtio/

Linux virtio driver code: drivers/virtio/

Linux vhost device code: drivers/vhost/

My blog: http://blog.vmsplice.net/

My email: stefanha@redhat.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16

