
A Shared File System for Virtual Machines

virtio-fs

Dr. David A. Gilbert
<dgilbert@redhat.com>

Stefan Hajnoczi
<stefanha@redhat.com>

1

Miklos Szeredi
<mszeredi@redhat.com>

Vivek Goyal
<vgoyal@redhat.com>

What is virtio-fs?

2

Shares a host directory tree with the guest

Desired semantics:
● POSIX file system plus modern extensions
● Concurrent access from multiple guests
● Local file system semantics (coherency) where possible

Started in 2018, now being tested and developed by a growing community:
https://virtio-fs.gitlab.io/

https://virtio-fs.gitlab.io/

Use case: Lightweight VMs and container VMs

3

Micro VMs, Kata Containers, Function as a service
(FaaS)

Requirements:
● Fast boot time - Avoid copying file contents into

guest during boot
● Low memory overhead - Share read-only file

contents between all guests
● Access to files from host - Both read and write

access

Try it: virtio-fs has been available in Kata Containers
since 1.7!

Container
Image

Container

Guest

Dynamic
Config

Host

Use case: File system-as-a-service

4

Provide access to NFS, Gluster, Ceph, etc storage

Requirements:
● No guest network access - Isolate guest from storage network for security
● Hide storage details - Change storage technology without affecting guests

Guest Host Storage
Backend

virtio-fs

Ceph

Use case: Traditional file sharing

5

Share a host directory with the guest

Requirements:
● No manual setup - Easy to implement as management tool command
● Add/remove directories at will - Hotplug support

Guest
virtio-fs Shared

Files

Host

Why virtio-fs?

6

QEMU/KVM needs a production-quality shared file system

Active development of virtio-9p ceased in 2012

Can we do better than network file systems by taking advantage of co-location
between VM and hypervisor?

Architecture

7

virtiofs.ko

FUSE client

virtiofsd

Files

DAX

QEMU

Based on FUSE (but not compatible!)

Sandboxed virtiofsd vhost-user backend

QEMU assists in DAX host page cache
sharing

Supports local and remote storage

Host

Guest

Virtiofsd

8

Vhost-user backend consisting of:

Subset of libfuse library
● Modified (not ABI compatible)
Libvhost-user
● Provides the basis for the transport
Passthrough_ll
● Loopback FUSE file system
Thread per queue + thread pool for servicing
requests

libfuse
lib passthrough_ll

QEMU
 libvhost-
user

virtiofsd

Potential daemons

9

● Other filesystems
○ Instead of POSIX could access network FS directly (e.g. gluster/ceph/nfs)

Rather than through the kernel
○ Or block storage via userspace (see next talk!)

● Other implementations
○ Rust implementation being considered (crosvm but not vhost-user)

DAX

10

virtiofsd

Files

QEMU
Host

Guest

BAR

File frag
File frag
File frag
File frag
File frag

● Guest driver requests
(un)mapping by special fuse
message

● Mappings appear in PCI-BAR at
guest specified offset

● BAR appears almost like DAX
device in guest
○ But is only a window into the fs;

not the whole fs
● Virtiofsd opens files, QEMU

mmap’s them

mmap

File frag
File frag
File frag
File frag
File frag

virtiofs.ko

FUSE client

Differences from normal FUSE

11

● virtio-fs device instead of /dev/fuse
○ FUSE messages are transported over the virtio-fs device
○ Needs vhost-user-fs support in FUSE daemon, can’t use libfuse daemons

● Security inversion
○ Traditional FUSE: Kernel is trusted, daemon is untrusted user program
○ Virtio-fs: Kernel is the untrusted guest, daemon cannot trust it

■ Additional checks added to libfuse/passthrough_ll.c
● Reboots

○ Traditional FUSE: Daemon runs under the kernel, reboots restart daemon
○ Virtio-fs:

■ Must handle a guest reboot, or mount/umount (but reset state)

How to try it

12

Run virtio-fs with QEMU: https://virtio-fs.gitlab.io/howto-qemu.html

(host)# virtiofsd --socket-path=/tmp/vhost-fs.sock \
 -o source=/path/to/shared/dir
(host)$ qemu … \
 -chardev socket,id=char0,path=/tmp/vhost-fs.sock
 -device vhost-user-fs-pci,chardev=char0,tag=myfs
(guest)# mount -t virtiofs myfs /mnt

Or try it with Kata Containers: https://red.ht/kata-virtio-fs

https://virtio-fs.gitlab.io/howto-qemu.html
https://red.ht/kata-virtio-fs

Virtio-fs vs virtio-9p Benchmark

13

Source:
https://lore.kernel.org/linux-fsdevel/20190821173742.24574-1-vgoyal@redhat.com/

virtio-fs vs virtio-9p Benchmark Contd.

14

Source: https://lore.kernel.org/linux-fsdevel/20190821173742.24574-1-vgoyal@redhat.com/

Caches

15

● Cache latency much less than roundtrip between host and guest
● Filesystem caches:

○ Data: can be shared between host and guest (DAX)
○ Metadata, pathname lookup: can’t be shared

● If not shared, then need to invalidate on “remote” change
○ Synchronous invalidate → strong coherency
○ Asychronous invalidate or timeout → weak coherency

● Guest cache invalidate should not block (Denial of Service)

FUSE client

Virtiofsd

Shared memory version table

16

● Multiple guests ↔ single table
● One possible implementation of

synchronous, non-blocking
invalidation

● Fast validation of cache entry
○ Compare value of two memory

locations
● Not (yet) working for host

filesystem changes

FUSE client
Inode

Inode

Virtiofsd
file version

foo 13

bar 28

dir 43

Current Status

17

VIRTIO specification - Merged in 1.2

Linux guest driver - Core merged in 5.4, DAX not yet posted

QEMU vhost-user-fs device - Merged in 4.2

QEMU virtiofsd daemon - First part posted

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

18

Cache modes

19

Users can choose coherency vs performance trade-off:
● Coherency may require more communication, lower performance

Available modes:

Mode Close-to-open
consistency

Guest page
cache

Metadata
timeout

none Yes No Instant

auto Yes Yes 1 second

always No Yes 1 day

Security model

20

Guest has full control over file uid, gid, and permissions
● Access checks performed inside guest
● Guests sharing a file system must trust each other
● Design choice in current implementation, not inherent in VIRTIO spec

virtiofsd runs as root but is sandboxed:
● Mount namespace restricts access to only the shared directory
● Seccomp whitelist reduces syscall attack surface

Benchmark configuration

21

Host:
● Fedora 28 host with 32 GB RAM and 24 logical CPUs
● 2 sockets x 6 cores per socket x 2 threads per core
● ramfs as the storage

Guest:
● 8 GB RAM and 16 vCPUs
● 8 GB DAX Window
● 4 x 2 GB fio data files

9p (cache=none), virtio-fs (cache=none), and virtio-fs (cache=none + dax)
iodepth=16

