
Linux is a registered trademark of Linus Torvalds.

Running and Tuning KVM
Hands-on Virtualization

Stefan Hajnoczi – stefanha@linux.vnet.ibm.com
Open Virtualization
IBM Linux Technology Center

2011

Agenda
● Running KVM - 2:00-3:00 pm

– Introduction to KVM
– Hardware & software requirements
– Installation
– Creating virtual machines
– Host configuration
– Managing virtual machines

● Advanced KVM - 3:00-3:50 pm
– Resource management
– Performance monitoring
– APIs and scripting

Server sprawl

Flickr CC by CHRISTOPHER MACSURAK
http://www.flickr.com/photos/macsurak/5020598359/

What is virtualization?

Hypervisor

VM

•Server consolidation
•Development environments
•Running multiple OSes
•Cloud and hosting

VM VM

What is KVM?
● Open source

– Uses Linux and QEMU
– Choice of vendor support available

● Easy to install and maintain
– Integrated into the Linux kernel
– Mainline since 2007 (Linux 2.6.20)
– Modern distributions already ship it

● Rich features
– Live migration
– Memory and CPU overcommit
– Secure remote management
– Device assignment
– ...and much more

KVM ecosystem
● KVM as a component

– Cloud stacks
– Embedded/appliances
– Hide KVM behind their own APIs

● KVM integration into mangagement
tooling

– Management and automation stacks
– Abstract the hypervisor

● This presentation covers KVM with libvirt
– Popular for server virtualization
– Popular for ad-hoc and desktop
– Fully open source stack

Layers of the onion

Flickr CC by irish {hunnyb}
http://www.flickr.com/photos/10460483@N02/5448093522/

The KVM stack

kvm.ko

qemu-kvm

libvirtd

virt-manager

Guest

virsh virt-tools

Kernel support

VM

Mgmt layer

User-facing
tools

Hardware requirements
● 32- and 64-bit x86 supported

– Ports beyond scope of this talk
● CPU with virtualization extensions

– grep '\(vmx\|svm\)' /proc/cpuinfo
● Virtualization extensions can be toggled in BIOS

– Make sure they are enabled

Software requirements
● No special kernel components needed

– kvm.ko already in kernel package
● Install userspace components

– qemu-kvm – main program
– libvirt – management layer
– virt-manager – GUI management tool

● Debian-based distros:
– aptitude install qemu-kvm libvirt-bin

● Red Hat-based distros:
– yum install qemu-kvm libvirt

● Add virt-manager if you want a GUI tool

Creating a virtual machine
● VMs can be installed from an ISO file

● Choose size of disk image
– Small VMs: 10 GB Linux, 16 GB Windows

● Boot VM into installer
– Kickstart/preseed works like physical install

Disk imageInstall ISO

VM

Options when creating a VM
● Guest OS hint

– Older OSes may not support optimizations
– Automatically chooses good configuration

● Preallocating disk image
– Writing a block for the first time can be slow
– Allocates entire image ahead of time
– “Thick provisioning”

● Virtualization type should be 'kvm'
● Choose between 32- and 64-bit VM

– 32-bit lowers memory footprint for small VMs

Guest devices (briefly)
● Networking

– Prefer virtio-net for performance
– Use e1000 for legacy guests

● Storage
– Prefer virtio-blk for performance
– Use ide for legacy guests

● USB
– USB tablet provides mouse pointer
– 1000 Hz timer, consider disabling USB

Netboot a virtual machine
● PXE boot allows centralized install over network

● Requires DHCP and TFTP server for install files
● Also useful for stateless VMs

Disk image

VM

Net

Automated VM install/clone
● virt-install

– Command-line tool to create new VM
– Both interactive and unattended modes

virt-install --name my-vm --ram 1024
 --cdrom fedora15.iso
 --os-variant fedora15
 --file path/to/disk.img

● virt-clone
– Command-line tool to copy a VM
– Sets new UUID, MAC address, etc

virt-clone -o rhel-6 --auto-clone

Migrating VMs to KVM
● OSes get upset when hardware changes
● Physical-to-virtual migration

– Physical server to VM
– Capture physical disk image
– Prepare for virtual hardware environment
– virt-p2v automates this process

● Virtual-to-virtual migration
– VMware, Xen, etc to KVM
– Convert disk image to raw, qcow2, or qed
– Uninstall old guest tools
– Prepare for virtual hardware environment
– virt-v2v automates this process

Flickr CC by signal11
http://www.flickr.com/photos/signal11/722495325/

Host configuration
● Hypervisor, storage, and network configuration

– Host-wide settings
● KVM scales to a range of use cases

– Think Linux on phones to supercomputers
– There are many possible configurations

Networks
● VMs have virtual ethernet adapters

– Libvirt can set up physical net connectivity
● Services available for VM networking

– DHCP
– Firewall rules
– Traffic shaping (QoS)

● Several net configurations are support
– Depending on use-case
– Let's look at them in turn

Private network

● No physical network connectivity
– Guarantees VMs are isolated

● VMs can communicate with each other
– Or be totally isolated with independent

private networks

VM

virbr

VM

Bridged network

● VM is visible on host network
– Needs host network DHCP or static IP

● VM appears like physical machine
– Suitable on managed LAN and datacenter
– Not suitable on foreign LAN

VM

virbr

Host eth0

Routed network

● Host acts as router for VM
– Host has full firewall and routing capability

● Popular on managed LAN
– LAN must know to route VM traffic to host

VM

virbr

Host eth0

NAT network

● Host acts as a masquerading router
– VM does not need IP on host network
– Cannot connect back to VM by default

● Popular on laptops and desktops
– Usable on foreign networks

VM

virbr

Host eth0

Storage pools
● Virtual disks come from a storage pool

– Libvirt calls virtual disks “storage volumes”
– Commands to create, delete, etc volumes

● Storage pools represent storage backends
– Local directories on a host file system
– Local LVM volumes
– Remote directories over NFS
– Remote iSCSI LUNs

● Ad-hoc disk images can also be configured
– Useful for managing storage outside libvirt
– Just specify path to image file or block device

Local storage
● LVM volume group

– Each virtual disk is an LVM volume
– Familiar management tools
– Good performance due to thin layer

● Directory on host file system
– Each virtual disk is a local file
– Can use raw files or image format
– Raw performance fairly good
– Image formats add features at a cost

● Compact – efficient transfer (e.g. HTTP)
● Backing files – clone from master image

Remote storage
● Directory over NFS

– Centralized storage, easy management
– Efficient live migration between hosts
– Complex performance characteristics

● More layers and network factors
● iSCSI or FC LUNs

– Remote block storage
– Good fit for traditional enterprise setups
– Can also put LVM onto remote LUN for local

management

Flickr CC by ChelseaWa
http://www.flickr.com/photos/cowalsh/5357373699

Connecting to VM screen
● KVM uses VNC

– Next-gen Spice protocol under development
● virt-viewer -c <uri> <domain>

– Local:
– virt-viewer -c qemu:///system vm1
– Remote:
– virt-viewer -c qemu+ssh://host vm1

● Regular VNC client works too
– First find VNC display number:
– virsh vncdisplay vm1
– Then connect:
– vncviewer host:$displaynum

virsh command-line interface
● Provides commands for libvirt APIs

– virsh shutdown vm1
● More low-level than virt-manager
● VM config expressed in “domain XML”

<domain type='kvm'>
 <name>vm1</name>
 <memory>1048576</memory>
 <vcpu>1</vcpu>
…
● Networks and storage pools also in XML
● Host-wide configuration in /etc/libvirt

Flickr CC by qwrrty
http://www.flickr.com/photos/qwrrty/5877478960/

Resource management
● Hosts resources:

– CPUs
– Memory
– I/O bandwidth and iops

● Resource management questions:
– How do I dedicate a CPU to this VM?
– Can I run multiple VMs on the same CPU?
– How do I add memory to a running VM?
– Can I give VMs more memory than the host?

CPU resource management
● Each vCPU is a thread on the host
● Normal Linux thread scheduling applies:

– Multiple threads run on a host CPU by default
● Running more vCPUs than host CPUs

– Expect low performance
– Avoid SMP guests when overcommitting

● Use affinity to bind vCPU:
– virsh vcpupin <dom> --vcpu 0 1
– Pins vCPU 0 to host CPU 1

● Use cgroup cpuacct controller for CPU share:
– virsh schedinfo <dom> --set cpu_shares=X
– Sets proportional CPU share

Memory resource managment
● Adjusting memory of running VM

– virsh setmem <dom> <kilobytes>
– Must be within max memory value
– Set max memory when booting VM

● Memory can be overcommitted
– Simply assign more memory than available
– Host will swap in guest memory
– Test performance before deploying

Kernel Samepage Merging
● Shares identical memory pages between VMs

– Reduces memory consumption on host
– Ideal when running cloned VMs

● Enable with: echo 1 >/sys/kernel/mm/ksm/run
● Consumes CPU to find matching pages

– Use ksm when sharing is likely

A A

A

Match!

Flickr CC by Dawn Hopkins
http://www.flickr.com/photos/seenoevil/343753843/

Performance monitoring
● VM performance is different

– Can have different OSes
– Might be owned by someone else
– Host cannot see inside VMs

● Performance questions
– Why is my VM slow?
– Will I need to upgrade the host's RAM?
– Which VM is hogging the disk?

Host-wide monitoring
● qemu-kvm is just a userspace process

– VM executes as part of qemu-kvm
– Standard performance tools can be used

● vmstat 1
procs -----------memory---------- ---swap-- -----io----

 r b swpd free buff cache si so bi bo

 0 0 64184 224432 226104 1627340 0 0 0 0

-system-- ----cpu----

in cs us sy id wa

5191 6389 19 4 78 0

● System load (r – runnable, b – blocked)
● Memory utilization
● Swap activity (si – swap in, so – swap out)

Host-wide monitoring (cont'd)
● Disk I/O (bi – blocks in, bo – blocks out)
● CPU utilization (us – user, sy – system, id – idle,

wa – I/O wait)

● This is standard Linux performance monitoring
– Works because qemu-kvm is a process

● Let's look at answering specific questions...

Host-wide CPU utilization
● How much CPU utilization is inside VMs?
● On host: mpstat -A 1

CPU %usr %nice %sys %iowait %irq %soft
All 1.50 0.00 1.50 0.00 0.00 0.00
0 2.97 0.00 1.98 0.00 0.00 0.00
1 1.98 0.00 1.98 0.00 0.00 0.00
%steal %guest %idle
0.00 1.00 96.00
0.00 0.00 95.05
0.00 0.99 95.05

● Useful since %guest not displayed by vmstat

Per-VM CPU utilization
● Which VM is consuming CPU?
● top -c

– Interactive list of processes
– Look for top qemu-kvm process

● pidstat -ul -C kvm 1
– Only shows kvm processes
– See how much each VM is consuming

Host memory utilization
● Is the host running low on physical RAM?
● Check current host memory utilization

– free -m
 total used free shared buffers cached

Mem: 3862 3656 206 0 226 1596

-/+ buffers/cache: 1834 2028

Swap: 1903 60 1843

● Watch for swap activity
– vmstat 1
– Check swap in/out ('si'/'so') counts

● Remember guest memory can be swapped out
– Overcommit is possible, plan accordingly

Host-wide disk I/O
● What type of I/O is the host performing?
● iostat -k -x

Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s

dm-3 0.00 0.00 0.00 1179.00 0.00 20604.00

avgrq-sz avgqu-sz await r_await w_await svctm %util

34.95 0.86 0.73 0.00 0.73 0.73 85.60

● You must know which host block device
– /var/lib/libvirt/images → /dev/mapper/root
– Use mount to find host block device
– Use dmsetup table to find physical device

Host-wide disk I/O (cont'd)
● If you have access to VM

– Compare I/O pattern on host to guest
– I/O pattern should be very similar
– Average request size (avgrq-sz)
– Significant difference could mean

misalignment

Guest

Host

Single guest block spans host blocks,
requires accessing two blocks instead
of one.

Per-VM disk I/O
● Which VM is hogging the disk?
● Check qemu-kvm processes doing heavy I/O

– pidstat -dl -C kvm 1
PID kB_rd/s kB_wr/s kB_ccwr/s Command
9291 8992.00 24.00 0.00 /usr/bin/kvm

Flickr CC by Windell Oskay, http://www.flickr.com/photos/oskay/437341128/

APIs and scripting
● Libvirt provides APIs and command-line tools
● Bindings

– C/C++, Python, Perl, Java, OCaml, …
● Areas covered

– VM lifecycle
– Monitoring and connecting to VMs
– Storage pools
– Networking and firewall rules

● http://libvirt.org/

virsh – command-line tool
● Basic scripts can use virsh

– Especially useful for shell scripting
– Easy interactive mode for development

● Points to consider
– Interface not guaranteed stable
– More efficient to use API

Libvirt API

virConnect

virDomain

virStoragePool

virStorageVol

virNetwork

Main types in the API

Python example
● Halve assigned memory:

>>> import libvirt
>>> c = libvirt.open("qemu:///system")
>>> dom = c.lookupByName('vm1')
>>> dom.maxMemory()
1048576
>>> dom.setMemory(1048576 / 2)
0

More libvirt APIs
● Official C API documentation:

– http://libvirt.org/html/libvirt-libvirt.html
● Existing virt-tools can serve as examples:

– C – virsh
– Python – virt-clone, virt-install, virt-manager
– OCaml – some of libguestfs

http://libvirt.org/html/libvirt-libvirt.html

Where to go for more info
● QEMU, KVM, and libvirt

– http://qemu.org/
– http://linux-kvm.org/
– http://libvirt.org/

● virt-tools – management tools
– http://virt-tools.org/

● libguestfs – manipulating disk images
– http://libguestfs.org/

● My blog – poweruser and developer tips
– http://blog.vmsplice.net/

http://qemu.org/
http://linux-kvm.org/
http://libvirt.org/
http://virt-tools.org/
http://libguestfs.org/
http://blog.vmsplice.net/

Stay current on Linux and Open
Virtualization at IBM

Follow us on Twitter: @Linux_at_IBM

Like us on Facebook: Linux at IBM

www.ibm.com/linux

Follow us on Twitter: @OpenKVM

Like us on Facebook: KVM at IBM

www.ibm.com/systems/kvm

Linux Open Virtualization & KVM

