NVDIMM and PMEM overview

What is it? How does it work? How does it benefit virtualization?

Marc Marí Barceló <markmb@redhat.com>
12/10/2015
WHAT ABOUT ME?

- Red Hat Virtualization Team
- Working on making QEMU faster

You can find me as markmb
AGENDA

Introduction
Project
Namespaces
NFiT
Virtualization
INTRODUCTION

About the name

N
V
D
I
M
M
INTRODUCTION
About the name

Non Volatile Double In-line Memory Module
INTRODUCTION

About the name

Non Volatile Double In-line Memory Module

DIMM: This is the HW format

INTRODUCTION
About the name

Non-Volatile Double In-line Memory Module

Non-volatile: you plug it off and on again, and the Information is still there
INTRODUCTION

Why?

IBM 305 RAMAC (1958):
- 5 MB
- 1 ton
- 3200$ / month
- R/W 1 char: 96 µs

VS

Samsung SSD (2015?):
- 1 TB
- 2.5 inch
- 350$
- 500 MB/s

https://en.wikipedia.org/wiki/IBM_305_RAMAC
http://www.amazon.com/Samsung-2-5-Inch-Internal-MZ-75E1T0B-AM/dp/B00OBRFFAS/
INTRODUCTION

Future

THE FUTURE: NVDIMM
INTRODUCTION

Future

THE FUTURE: NVDIMM

?
INTRODUCTION

Virtualization

Why is useful in virtualization?:

• Pass-through of NVDIMM devices to the guest:
 • Direct access
 • No vm-exits
• Direct access to host files via emulated NVDIMM:
 • Page cache bypass
 • Better performance
• NVDIMM emulation from host file:
 • NVDIMM testing on guests
PROJECT

pmem.io

NVM Library team:

- Intel
- Led by Andy Rudoff
- 25/08/2014 – pmem project created
- Persistent memory programming easier for developers

https://pbs.twimg.com/profile_images/532732477320593408/_rEfoNQ3.png
http://pmem.io/about/
PROJECT
pmem.io

Userspace libraries:
- libpmemobj: object store in pmem
- libpmemblk: arrays of pmem-resident blocks
- libpmemlog: pmem-resident log
- libpmem: low level pmem support
- libvmmem: volatile memory pool
- libvmmmalloc: transparent conversion from dynamic memory allocation to pmem allocation

http://pmem.io/nvml/
PROJECT
libnvdimm

libnvdimm kernel library + libndctl userspace helper library

- Sent around April this year (merged):
 - https://lkml.org/lkml/2015/4/18/139 - NFIT-Defined / NVDIMM Subsystem
 - Other patch series
Virtual NVDIMM for QEMU

- Only PMEM access mode is implemented
Drivers and this presentation are based on specs:

- **NVDIMM Namespace Specification:**
- **NVDIMM Drivers Writers Guide:**
- **NVDIMM DSM Interface Example:**
- **Linux docs:**
- And code
NAMESPACES
What are they?

Divide the NVDIMMs into logic units of storage. Like SCSI LUNs

Two types:
• Persistent memory namespaces
• Block mode namespaces
NAMESPACES
Types

Persistent memory namespaces:
• Accessed using loads and stores
• Mapped to physical memory
• Problem: when is the data really persistent? Caches, buffers...
 • New instructions such as CLWB and PCOMMIT
 • Flushing cache but not deleting from cache
NAMESPACES

Types

Block mode namespaces:
• Accessed using block operations
• Atomicity at block level: in case of power failure when writing, it can be rolled back or rolled forward.
• Indirect access through a Block Window:
 • No mapping the entire memory
 • Reduce address utilization
 • Reduce risk of wrong addressed writes
NAMESPACES
What are they?

Rules:
- Namespaces cannot overlap
- Pmem namespaces can extend across multiple NVDIMMs (interleaving)
- Block mode namespaces can be in just one NVDIMM
- There can be multiple block mode namespaces in one NVDIMM
NAMESPACES

Interleaving

No visible from guest. Ignored in virtualization
NAME SPACES
Block Window

Block windows:
• Block control window:
 • Command/Address register: where to read/write (in device addresses)
 • Status register: status of the operation
• Block data window:
 • The block to be written/the block read

Different block windows can operate in parallel
NAMESPACES

Block Window

NVDIMM

Block control window

Block data window
NAMESPACES
Block Translation Table

Atomicity at block level in block namespaces.
Block namespaces broken into arenas (up to 512GB):
• Arena info block (backup)
• Arena flog
• Arena map
• Arena data area
• Arena info block

https://github.com/pmem/nvml/blob/master/src/libpmemblk/btt.c
NAMESPACE
Where are they?

Label Storage Area
• Minimum of 128 KB
NFIT

What is it?

ACPI table

NFIT: NVDIMM Firmware Interface Table

- Standardize access to NVDIMM information and namespace across vendors
- Filled through ACPI _DSM
 - Get SMART information
 - Get and set Namespace Label Data
 - Get Vendor-Specific Command Log
 - Vendor-Specific commands
NFIT Table
NFIT Structures

- SPA Range Structure: defines memory mapped region address, length and properties
- Memory Device to System Address Range Map Structure: memory device properties
- Interleave Structure: defines interleaving properties
- SMBIOS Management Structure: SMBIOS is out of the scope
- NVDIMM Control Region Structure: hardware identifiers, and block control window stuff
- NVDIMM Block Data Window Region Structure: block accesses
- Flush Hint Address Structure: flush pending operations
NFIT
Structures

WARNING:
MemDev Region Size != SPA Range Length

Depends on interleaving!
NFIT
Structures

SPA Range Structure GUID: describe the Address Range Type
• Volatile memory region
• Persistent memory region
• Control region
• Block Data Window Region
• Virtual Disk Region – Volatile
• Virtual Disk Region – Persistent
• And others
• And vendor-defined
VIRTUALIZATION

Linux

Just new block devices:
- /dev/pmem → PMEM namespace
- /dev/nd_blk → Block namespace
- /dev/btt → If it has BTT

- Accessed with usual IO calls
- PMEM also with direct access (load/stores)

pmem.io libraries provide NVDIMM-friendly transactions
VIRTUALIZATION
QEMU

Pending merge:
• PMEM virtualization (no interleaving)

Missing:
• BLK mode: very inefficient, would cause at least two vm-exit
• NUMA support
• Hotplug support
VIRTUALIZATION
QEMU

Creating a NVDIMM device:

```bash
-device pc-nvdimm,file=/tmp/nvdimm
```

What happens with namespaces?

- `device pc-nvdimm,file=/dev/pmem,configdata`
 Uses device namespaces
- `device pc-nvdimm,file=/tmp/nvdimm`
 Creates a readonly namespace in memory
VIRTUALIZATION
SeaBIOS

Steps to boot from an NVDIMM PMEM namespace:
1) Find NFIT table
2) Search for PMEM namespaces. Looking at SPA tables is enough
3) Get the address and length of the area
4) Check Linux magic numbers and flags
5) Copy kernel to low memory
6) Boot normally

Preliminary implementation:
http://www.seabios.org/pipermail/seabios/2015-September/009770.html
QUESTIONS?