
Introducing the libblkio High-performance
Block I/O API

libblkio

Stefan Hajnoczi

stefanha@redhat.com

Alberto Faria

afaria@redhat.com

1

2

Block devices

NVMe, SCSI, ATA, virtio-blk follow the block device model

Read & Write access data in units of blocks

Flush persists previously written data to permanent storage

Discard (TRIM) and Write Zeroes manage block allocation

0 1 2 … N - 1

Block device

Block
(e.g., 512 bytes)

3

Where block device are used

Databases File Systems Emulators &
Hypervisors

I/O Frameworks &
Software-defined

Storage

● MySQL &
MariaDB

● Ceph Bluestore
● XFS, btrfs, etc

● QEMU

● SPDK

Backup, Forensics,
& Disk Imaging

Tools
● casync
● qemu-img
● mkfs

4

How libblkio came about

Guest

virtio-blk

QEMU block layer

nvme

AHCI …

file-posix …

QEMU accumulated non-trivial block drivers
● io_uring, NVMe userspace driver, …

More drivers were needed:
● virtio-blk-vhost-vpda
● virtio-blk-vhost-user

QEMU block drivers are only usable within QEMU
● Unable to reuse code in other programs

Decided to develop new drivers as a library instead

5

Block I/O interfaces have proliferated!

POSIXLinux
AIO io_uringvhost-user VFIO PCI

virtio-blk NVMe …

Application

How many can your application support?

vhost &
vDPA uring_cmdVFIO PCI

vhost-user VFIO PCIvhost &
vDPA uring_cmdVFIO PCI

6

Why use different interfaces?

POSIXLinux
AIO io_uring

virtio-blk NVMe …

POSIX is simple and device-agnostic

7

Why use different interfaces?

POSIXLinux
AIO io_uring

virtio-blk NVMe …

io_uring is asynchronous, less syscall overhead

vhost-user VFIO PCIvhost &
vDPA uring_cmdVFIO PCI

8

Why use different interfaces?

POSIXLinux
AIO io_uring

virtio-blk NVMe …

vhost-user VFIO PCIvhost &
vDPA uring_cmdVFIO PCI

NVMe + uring_cmd to bypass the VFS

9

Why use different interfaces?

POSIXLinux
AIO io_uring

virtio-blk NVMe …

vhost-user VFIO PCIvhost &
vDPA uring_cmdVFIO PCI

NVMe + VFIO PCI to bypass the kernel

10

Why use different interfaces?

POSIXLinux
AIO io_uring

virtio-blk NVMe …

virtio-blk + VFIO PCI to bypass
the guest kernel’s virtio-blk driver

vhost-user VFIO PCIvhost &
vDPA uring_cmdVFIO PCI

11

Why use different interfaces?

POSIXLinux
AIO io_uring

virtio-blk NVMe …

virtio-blk + vhost/vDPA to access
a slice of a physical virtio-blk device

vhost-user VFIO PCIvhost &
vDPA uring_cmdVFIO PCI

12

Why use different interfaces?

POSIXLinux
AIO io_uring

virtio-blk NVMe …

virtio-blk + vhost-user to communicate with a user-space
storage server (e.g., SPDK, qemu-storage-daemon)

vhost-user VFIO PCIvhost &
vDPA uring_cmdVFIO PCI

13

Are block I/O interfaces similar?

Same:

▸ Read, write, flush, discard, write
zeroes

▸ Requests

▸ Queues

Different:

▸ Synchronous or asynchronous

▸ Polling support

▸ I/O buffer memory constraints

▸ Queue memory layout

▸ Exact semantics and API details

▸ …

How much effort is it to integrate a new interface into your application?

14

libblkio provides a unified block I/O interface

POSIXLinux
AIO io_uringuring_cmdvhost-user VFIO PCI VFIO PCIvhost &

vDPA

virtio-blk NVMe …

Application

libblkio

15

Where libblkio can be used

Databases File Systems Emulators &
Hypervisors

I/O Frameworks &
Software-defined

Storage

● MySQL &
MariaDB

● Ceph Bluestore
● XFS, btrfs, etc

● QEMU

● SPDK

Backup, Forensics,
& Disk Imaging

Tools
● casync
● qemu-img
● mkfs

16

libblkio

▸ C API (implemented in Rust)

▸ Provides several “drivers”

･ Each driver talks to a different underlying block I/O interface

▸ All drivers provide the same API

･ No code changes necessary to use a different driver

17

libblkio

▸ Includes drivers for all environments

･ “io_uring”, useful on bare metal, in containers, in VMs

･ “virtio-blk-vfio-pci”, useful to bypass guest kernel drivers in VMs

･ “virtio-blk-vhost-vdpa”, useful to split a physical virtio-blk device into

many virtualized devices, e.g., for containerized environments

･ …

18

Lifecycle

Created 1. blkio_create(“io_uring”)

2. blkio_set_str(“path”, “disk.img”)
 blkio_connect()

3. blkio_set_int(“num-queues”, 3)
 blkio_start()

Connected

Started

Queue

Queue

Queue

19

Queues

▸ Workflow:

1. Enqueue requests

2. Submit requests and await completions

3. Process completions
Queue

▸ Queues are independent of each other

･ Commonly assigned to a thread/core
Read

Read

Write

. . .

20

Queues

▸ No request ordering

･ User must await completion before submitting next

request to establish ordering

▸ Can enqueue any number of requests

･ But not all may be in-flight simultaneously

･ Drivers allow configuring this internal limit

21

I/O modes

Blocking I/O Event-driven I/O Polled I/O

1. Enqueue &
submit requests

2. Block waiting
for completions

3. Process
completions

1. Enqueue &
submit requests

2. Read/poll
eventfd

3. Process
completions

1. Enqueue &
submit requests

2. Loop checking
for completions

3. Process
completions

22

Polling modes

Application-level
polling Driver-level polling

Linux io_uring

Application

libblkio

Completion IRQ

Linux io_uring

Application

libblkio

No IRQs

23

Block limits and properties

▸ Devices/drivers may impose restrictions on requests

▸ Named properties expose this information

･ “max-transfer” – Maximum read/write request size

･ “buf-alignment” – Mandatory data buffer offset/size alignment

･ …

▸ Writable properties are used for configuration

･ “path” – Device path for several drivers

･ “num-queues” – Number of queues to create

･ …

24

Memory regions

▸ Some drivers require pre-registering memory for data buffers

･ e.g., for establishing IOMMU mappings

▸ libblkio provides a unified memory region abstraction for this

･ Can be mapped/unmapped dynamically

･ Drivers may require data buffers to belong to mapped regions

RAM

Mapped memory regions

Data buffer

25

Memory regions

▸ There may be a limit on concurrently mapped regions

･ Mapping/unmapping might not be cheap

･ Ideally would map once and use many times

▸ Drivers may impose further restrictions on data buffers

･ Memory alignment, file descriptor-backed memory, …

▸ Utilities for allocating suitable memory are provided

26

Feature summary

▸ Unified, multi-queue block I/O API

▸ Blocking I/O, event-driven I/O, polled I/O

･ Fits your app’s I/O model

▸ Properties

▸ Memory regions

▸ Drivers are modular

･ Low integration effort

･ Can be contributed to

https://gitlab.com/libblkio/libblkio

27

Case study & evaluation

28

Case study: libblkio in QEMU

▸ QEMU (https://www.qemu.org/) is an emulator with a full block layer

▸ New QEMU block driver adds:
･ –blockdev io_uring,filename=test.img,...
･ –blockdev virtio-blk-vhost-user,path=vhost-user-blk.sock,...
･ –blockdev virtio-blk-vhost-vdpa,path=/dev/vhost-vdpa-0,...

▸ ~700 source lines of code (SLOC)

･ Applications typically need less code

▸ Expected in QEMU 7.2 release

29 See Jeff Cody’s talk for info on developing QEMU block drivers:
http://bugnik.us/kvm2013/

QEMU block drivers

Guest

virtio-blk

QEMU block layer

blkio

AHCI …

file-posix …

Guests (VMs) submit I/O requests to emulated
storage controllers.

The block layer hands requests to drivers.

Block driver integrates libblkio with QEMU.

30

I/O buffer memory in QEMU

Guest
RAM

Aligned
heap

Stack or
heap

Guest RAM is long-lived with occasional hotplug.

Block drivers like crypto or qcow2 allocate internal I/O buffers.

Small I/O from within QEMU may be arbitrary stack or heap memory.

31

Mapping QEMU I/O buffers

Registered
memory

Bounce
buffer pool

Guest RAM is permanently mapped to libblkio.

Bounce buffer pool is permanently mapped to libblkio

● Incurs copy overhead
● Alternative: temporary mappings?
● Alternative: intercept heap buffer allocation?

Existing applications need to make similar decisions
about mapping I/O buffer memory.

Guest
RAM

Aligned
heap

Stack or
heap

32

vhost-user map/unmap operation

VHOST_USER_ADD_MEM_REG

VHOST_USER_REM_MEM_REG

vhost-user frontend
process

I/O
buffer

vhost-user backend
process

mmap(2)

munmap(2)

Mapping involves file descriptor passing over an AF_UNIX socket.

33

Measuring vhost-user map/unmap overhead

Workload: 512-byte random reads, direct I/O, mean of 5 runs, 60 seconds per run
Hardware: Intel® Xeon® Silver 4214 CPU, Intel® Optane™ SSD DC P4800X Series (375 GB)
Software: Fedora 36 w/ Linux 5.19.1, qemu-storage-daemon vhost-user-blk export, libblkio 1.0.0, QEMU ba58ccbef6 (approx 7.1.0-rc3) + blkio driver patches
Ansible playbook & results: https://github.com/stefanha/qemu-perf/commit/33196329916b66f1cdbf54b2cbc3898a9d83fb7e

M
ea

n
la

te
nc

y
(µ

s/
op

)

Queue depth 1

▸ Permanent mapping vs temporary mapping

･ 1 vCPU, 512-byte random reads

･ Mean latency (lower is better)

▸ qemu-storage-daemon vhost-user-blk export

▸ Out-of-the-box config without guest & vhost-user-blk

polling

The I/O buffer mapping strategy is important!

3x

34

Real-world performance: QEMU with libblkio

How does libblkio’s io_uring driver compare against QEMU’s io_uring

implementation?

▸ –blockdev host_device,filename=/dev/nvme0n1,aio=io_uring,...

vs

▸ –blockdev io_uring,filename=/dev/nvme0n1,...

QEMU

libblkio

35

QEMU io_uring randread

Workload: 512-byte random reads, direct I/O, mean of 5 runs, 60 seconds per run
Hardware: Intel® Xeon® Silver 4214 CPU, Intel® Optane™ SSD DC P4800X Series (375 GB)
Software: Fedora 36 w/ Linux 5.19.1, libblkio 1.0.0, QEMU ba58ccbef6 (approx 7.1.0-rc3) + blkio driver patches
Ansible playbook & results: https://github.com/stefanha/qemu-perf/commit/630d3b4907bb50bc6a3421b51d5926cbdcab5a82

M
ea

n
la

te
nc

y
(µ

s/
op

)

Queue depth

▸ Native io_uring vs libblkio io_uring QEMU block drivers

･ 1 vCPU, 512-byte random reads

･ Mean latency (lower is better)

36

fio micro-benchmarks

M
ea

n
la

te
nc

y
(µ

s/
op

)

Queue depth

▸ fio’s io_uring engine vs libblkio fio engine using “io_uring” driver

･ 1 core, 512-byte random reads, w/o and w/ driver-level polling (i.e., poll queues)

･ Mean latency (lower is better)

+3.7%

+6.8%

Workload: 512-byte random reads, direct I/O, median of 10 runs, 30 seconds per run
Hardware: Intel® Xeon® Silver 4214 CPU, Intel® Optane™ SSD DC P4800X Series (375 GB)
Software: Fedora 36 w/ Linux 5.19.1, libblkio 1.0.0, fio 3.31 + libblkio engine patches

37

Future work

38

Future work: Stable blkio Rust crate

Native Rust API should be idiomatic and safe.

Current API exposes MemoryRegion and raw iovec pointers

▸ Better abstractions needed for safety

How to manage request lifetime across do_io() loop?

▸ Caller is trusted to keep the iovecs alive for the duration of the request

Hanna Reitz has been experimenting with the blkio crate in Rust applications.

39

Future work: Network storage

NVMe over TCP, NBD, iSCSI, etc could be added.

Data path APIs are asynchronous but control path APIs are synchronous.

May need async control path API to avoid hangs.

40

Future work: Queue passthrough

Emulators like QEMU present a storage device like virtio-blk to the guest.

They emulate the storage controller and invoke corresponding libblkio APIs.

When the underlying device is the same type as the guest device, passing through

the queues bypasses the emulator and libblkio for better performance.

Currently in development for virtio-blk devices by Stefano Garzarella.

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

41

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

42

Extended fio micro-benchmark results

M
ea

n
la

te
nc

y
(µ

s/
op

)

Queue depth

Workload: 512-byte random reads, direct I/O, median of 10 runs, 30 seconds per run
Hardware: Intel® Xeon® Silver 4214 CPU, Intel® Optane™ SSD DC P4800X Series (375 GB)
Software: Fedora 36 w/ Linux 5.19.1, libblkio 1.0.0, fio 3.31 + libblkio engine patches

