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What is File Descriptor Monitoring?

API for determining when a file descriptor 
becomes ready to perform I/O

● Is a client connecting to a listening socket?

● Has a new message arrived on a socket?

● Is it possible to write more data to a pipe?



  

Linux APIs

● select(2)
● poll(2)
● epoll(7)
● io_uring
● Also: fasync/SIGIO, Linux AIO



  

Kernel Interface
These APIs are implemented using one* interface:

struct file_operations {

    __poll_t (*poll) (struct file *,

                      struct poll_table_struct *);

};

Set of events that 
are ready

* except fasync/SIGIO



  

Linux File Descriptor Events
EPOLLIN Ready for read(2)

EPOLLOUT Ready for write(2)

EPOLLRDHUP Socket peer will not write anymore

EPOLLPRI File-specific exceptional condition

EPOLLERR Error or reader closed pipe

EPOLLHUP Socket peer closed connection

Plus rarely-used out-of-band events.

Spurious EPOLLIN is possible, use O_NONBLOCK



  

Why use File Descriptor Monitoring?

Example: text-based Matrix chat client

We want to respond to user input from terminal 
and Matrix activity from network.

Matrix
server

Hello world :)

> Hi!_



  

Event-driven Architecture

Spawning a thread for each I/O task requires 
coordination and resources. Is there another way for 
I/O bound applications?

while (running) {

    Event *event = next_event();

    handle(event);

}

Needs file descriptor 
monitoring



  

Where is it used?
● GUI applications (Qt, GTK, etc)
● Servers (nginx, etc)
● “Thread-per-core architecture”
● Sometimes just to add timeouts or

cancellation to blocking syscalls



  

select(2)

int pselect(int nfds,

            fd_set *readfds,

            fd_set *writefds,

            fd_set *exceptfds,

            const struct timespec *timeout,

            const sigset_t *sigmask);

Input:
Set bit n
to monitor
fd number n

Output:
Bit n is set
if fd number n
is ready

Highest fd number plus 1Total bits set



  

select(2) Quirks
● Inefficient for sparse bitmaps, lots of scanning

   00000000000000000000000001 ← fd 25

● FD_SETSIZE limit is 1024 on Linux (glibc)

Can’t use select(2) if fd is larger.



  

Associating Application Objects

if (FD_ISSET(tty_fd))

    read_tty_input();

for (i=0; i<nfds; i++)

    if (FD_ISSET(i))

        obj->fd_ready();

select(2) does not make it easy to locate the corresponding 
application object for an fd in the general case.

Hard coded: General case:✓ ✗



  

poll(2)
int ppoll(struct pollfd *fds, nfds_t nfds,

          const struct timespec *tmo_p,

          const sigset_t *sigmask);

struct pollfd {

    int fd;

    short events;

    short revents;

};

Input: Event mask to monitor

Output: Ready event mask

Ready event count



  

poll(2) compared to select(2)
● Number of fds no longer limited to 1024 ✓
● Dense fd list ✓
● Input not overwritten, can be reused next call ✓
● Easy application object lookup ✓
for (i = 0; i < nfds && ret > 0; i++)

    if (fds[i].revents) {

        obj[i]->fd_ready(); ret--;

    }



  

epoll_ctl(7)

int epoll_ctl(int epfd, int op, int fd,

              struct epoll_event *event);

struct epoll_event {

    uint32_t events;

    epoll_data_t data;

};

EPOLL_CTL_ADD,
EPOLL_CTL_MOD,
or EPOLL_CTL_DEL

Event mask to monitor
Application-specific value

Created with
epoll_create1(2)



  

epoll_pwait2(2)

int epoll_pwait2(int epfd,

                 struct epoll_event * events,

                 int maxevents,

                 const struct timespec *timeout,

                 const sigset_t *sigmask);

Array of events
filled in by kernel

Size independent
of number of 
monitored fds. Round-
robin algorithm for 
fairness.

Number of ready fds New in Linux 5.11



  

epoll(7) flags

EPOLLET Edge-triggered mode

EPOLLONESHOT Auto-disable on event

EPOLLEXCLUSIVE Only wake one waiter,
solve Thundering Herd problem



  

Thundering Herd Problem

Listen Socket Worker 1

Worker 2

Worker 3

New connection Wake up

Multiple worker threads are monitoring
the same file descriptor.

File descriptor monitoring wakes up all workers,
but only one thread can handle the I/O.

CPU cycles are wasted waking up other workers.



  

Thundering Herd CPU Efficiency
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Stateless vs Stateful APIs
● select(2) and poll(2) are stateless

– Kernel doesn’t remember which fds to monitor 
between system calls

● epoll(7) is stateful
– epoll_pwait2(2) only collects results, doesn’t need 

to set up fd monitoring each time!



  

epoll(7) is O(num_ready)
● select(2) required scanning O(max_fdnum)
● poll(2) required scanning O(nfds)
● epoll_pwait2(2) is O(num_ready)

→ App only sees fds that are ready!



  

io_uring

int io_uring_enter(unsigned int fd,
                   unsigned int to_submit,
                   unsigned int min_complete,
                   unsigned int flags,
                   sigset_t *sig);

KernelSubmission
Queue

Completion
Queue

Number of reqs
to submit

Number of reqs
to wait for



  

io_uring Operations
IORING_OP_POLL_ADD One-shot file descriptor 

monitoring

IORING_OP_POLL_REMOVE Remove existing request

IORING_OP_EPOLL_CTL Like epoll_ctl(2)

IORING_OP_TIMEOUT Nanosecond timeout, can auto-
cancel if other requests 
complete

...and many more



  

Liburing Example
struct io_uring_sqe *sqe;

sqe = io_uring_get_sqe(ring);

io_uring_prep_poll_add(sqe, fd, POLLIN);

io_uring_sqe_set_data(sqe, obj);

…

n = io_uring_submit_and_wait(ring, MAX_EVENTS);

io_uring_for_each_cqe(ring, head, cqe)

    handle(cqe->user_data);

io_uring_cq_advance(ring, n);



  

io_uring Characteristics
● One system call to submit many fds ✓
● System call combines submission and completion ✓
● Userspace can busy wait on completions in 

mmapped completion queue, no system calls ✓
● Kernel can busy wait on submissions, no system 

calls ✓
● Much more: linked requests,

registered fds and buffers, etc



  

Net busy waiting
● Kernel busy waiting for sockets
● sysctl net.core.busy_poll=<microseconds>
● Busy wait in select(2), poll(2), epoll(7)

– Avoids descheduling current task and idling CPU

● Busy waiting is useful when latency is important 
and there are dedicated CPUs available



  

Is AIO the End of File
Descriptor Monitoring?

wait_fd_readable(fd);

read(fd);

done_cb();

async_read(fd, done_cb);

Instead of splitting I/O tasks into fd monitoring and I/O steps, let 
the kernel perform I/O asynchronously with io_uring. 

Monitoring approach: AIO approach:

io_uring calls file_ops->poll() 
internally, fewer system calls needed



  

Migrating to AIO
Applications and libraries are designed around file 
descriptor monitoring:
int monitor_fd(int fd, int events, ready_func ready_cb); 

An AIO read interface looks like this:
int aio_read(int fd, off_t off, void *buf, size_t len,
             done_func done_cb);

Big change for existing code bases :(

See my blog for consequences on software ecosystem:
http://blog.vmsplice.net/2020/07/rethinking-event-loop-integration-for.html

http://blog.vmsplice.net/2020/07/rethinking-event-loop-integration-for.html


  

Other APIs
● fasync/SIGIO

– Old signal-based mechanism
– Rarely-used, programming with signals is tricky

● Linux AIO
– Subset of io_uring functionality
– Similar shared memory ring design



  

fdmonbench
● Message is received on a random fd and is sent 

back
● No changes to set of monitored fds during 

benchmark
● Number of fds and number of receivers can be 

controlled
● https://github.com/stefanha/fdmonbench

https://github.com/stefanha/fdmonbench


  

Scalability
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CPU Efficiency

1 4 8 32 64 128 256 512 1024 4096 16386 65536
120000

130000

140000

150000

160000

170000

180000

190000

200000

210000

220000

select
poll
epoll
io_uring
io_uring-aio
threads

File Descriptors

R
o

u
n

d
tr

ip
s 

p
e

r 
C

P
U

 S
e

co
n

d
Linux 5.9.16, 16 GB RAM
i7-8665U 4 cores x 2 HT



  

API Summary
API POSIX? Herd? Complexity Comments

select(2) ✓ ✗ O(max_fdnum) For small tasks

poll(2) ✓ ✗ O(nfds) For portability

epoll(7) ✗ ✓ O(num_ready) Popular today

io_uring ✗ ✓ O(num_ready) Popular 
tomorrow?

Linux AIO ✗ ✗ O(num_ready) io_uring fallback



  

Thank You
https://blog.vmsplice.net/

stefanha on IRC

@stefanha:matrix.org

stefanha@gmail.com

https://blog.vmsplice.net/
mailto:stefanha@gmail.com
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