
  

The Evolution of
File Descriptor

Monitoring in Linux
From select(2) to io_uring

Stefan Hajnoczi <stefanha@gmail.com>
FOSDEM 2021

mailto:stefanha@gmail.com


  

What is File Descriptor Monitoring?

API for determining when a file descriptor 
becomes ready to perform I/O

● Is a client connecting to a listening socket?

● Has a new message arrived on a socket?

● Is it possible to write more data to a pipe?



  

Linux APIs

● select(2)
● poll(2)
● epoll(7)
● io_uring
● Also: fasync/SIGIO, Linux AIO



  

Kernel Interface
These APIs are implemented using one* interface:

struct file_operations {

    __poll_t (*poll) (struct file *,

                      struct poll_table_struct *);

};

Set of events that 
are ready

* except fasync/SIGIO



  

Linux File Descriptor Events
EPOLLIN Ready for read(2)

EPOLLOUT Ready for write(2)

EPOLLRDHUP Socket peer will not write anymore

EPOLLPRI File-specific exceptional condition

EPOLLERR Error or reader closed pipe

EPOLLHUP Socket peer closed connection

Plus rarely-used out-of-band events.

Spurious EPOLLIN is possible, use O_NONBLOCK



  

Why use File Descriptor Monitoring?

Example: text-based Matrix chat client

We want to respond to user input from terminal 
and Matrix activity from network.

Matrix
server

Hello world :)

> Hi!_



  

Event-driven Architecture

Spawning a thread for each I/O task requires 
coordination and resources. Is there another way for 
I/O bound applications?

while (running) {

    Event *event = next_event();

    handle(event);

}

Needs file descriptor 
monitoring



  

Where is it used?
● GUI applications (Qt, GTK, etc)
● Servers (nginx, etc)
● “Thread-per-core architecture”
● Sometimes just to add timeouts or

cancellation to blocking syscalls



  

select(2)

int pselect(int nfds,

            fd_set *readfds,

            fd_set *writefds,

            fd_set *exceptfds,

            const struct timespec *timeout,

            const sigset_t *sigmask);

Input:
Set bit n
to monitor
fd number n

Output:
Bit n is set
if fd number n
is ready

Highest fd number plus 1Total bits set



  

select(2) Quirks
● Inefficient for sparse bitmaps, lots of scanning

   00000000000000000000000001 ← fd 25

● FD_SETSIZE limit is 1024 on Linux (glibc)

Can’t use select(2) if fd is larger.



  

Associating Application Objects

if (FD_ISSET(tty_fd))

    read_tty_input();

for (i=0; i<nfds; i++)

    if (FD_ISSET(i))

        obj->fd_ready();

select(2) does not make it easy to locate the corresponding 
application object for an fd in the general case.

Hard coded: General case:✓ ✗



  

poll(2)
int ppoll(struct pollfd *fds, nfds_t nfds,

          const struct timespec *tmo_p,

          const sigset_t *sigmask);

struct pollfd {

    int fd;

    short events;

    short revents;

};

Input: Event mask to monitor

Output: Ready event mask

Ready event count



  

poll(2) compared to select(2)
● Number of fds no longer limited to 1024 ✓
● Dense fd list ✓
● Input not overwritten, can be reused next call ✓
● Easy application object lookup ✓
for (i = 0; i < nfds && ret > 0; i++)

    if (fds[i].revents) {

        obj[i]->fd_ready(); ret--;

    }



  

epoll_ctl(7)

int epoll_ctl(int epfd, int op, int fd,

              struct epoll_event *event);

struct epoll_event {

    uint32_t events;

    epoll_data_t data;

};

EPOLL_CTL_ADD,
EPOLL_CTL_MOD,
or EPOLL_CTL_DEL

Event mask to monitor
Application-specific value

Created with
epoll_create1(2)



  

epoll_pwait2(2)

int epoll_pwait2(int epfd,

                 struct epoll_event * events,

                 int maxevents,

                 const struct timespec *timeout,

                 const sigset_t *sigmask);

Array of events
filled in by kernel

Size independent
of number of 
monitored fds. Round-
robin algorithm for 
fairness.

Number of ready fds New in Linux 5.11



  

epoll(7) flags

EPOLLET Edge-triggered mode

EPOLLONESHOT Auto-disable on event

EPOLLEXCLUSIVE Only wake one waiter,
solve Thundering Herd problem



  

Thundering Herd Problem

Listen Socket Worker 1

Worker 2

Worker 3

New connection Wake up

Multiple worker threads are monitoring
the same file descriptor.

File descriptor monitoring wakes up all workers,
but only one thread can handle the I/O.

CPU cycles are wasted waking up other workers.



  

Thundering Herd CPU Efficiency

1 2 4 8 16 32
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

off
on

Number of Threads

R
ou

nd
tr

ip
s 

P
er

 C
P

U
 S

ec
on

d

engine=epoll
num-fds=16384

EPOLLEXCLUSIVE



  

Stateless vs Stateful APIs
● select(2) and poll(2) are stateless

– Kernel doesn’t remember which fds to monitor 
between system calls

● epoll(7) is stateful
– epoll_pwait2(2) only collects results, doesn’t need 

to set up fd monitoring each time!



  

epoll(7) is O(num_ready)
● select(2) required scanning O(max_fdnum)
● poll(2) required scanning O(nfds)
● epoll_pwait2(2) is O(num_ready)

→ App only sees fds that are ready!



  

io_uring

int io_uring_enter(unsigned int fd,
                   unsigned int to_submit,
                   unsigned int min_complete,
                   unsigned int flags,
                   sigset_t *sig);

KernelSubmission
Queue

Completion
Queue

Number of reqs
to submit

Number of reqs
to wait for



  

io_uring Operations
IORING_OP_POLL_ADD One-shot file descriptor 

monitoring

IORING_OP_POLL_REMOVE Remove existing request

IORING_OP_EPOLL_CTL Like epoll_ctl(2)

IORING_OP_TIMEOUT Nanosecond timeout, can auto-
cancel if other requests 
complete

...and many more



  

Liburing Example
struct io_uring_sqe *sqe;

sqe = io_uring_get_sqe(ring);

io_uring_prep_poll_add(sqe, fd, POLLIN);

io_uring_sqe_set_data(sqe, obj);

…

n = io_uring_submit_and_wait(ring, MAX_EVENTS);

io_uring_for_each_cqe(ring, head, cqe)

    handle(cqe->user_data);

io_uring_cq_advance(ring, n);



  

io_uring Characteristics
● One system call to submit many fds ✓
● System call combines submission and completion ✓
● Userspace can busy wait on completions in 

mmapped completion queue, no system calls ✓
● Kernel can busy wait on submissions, no system 

calls ✓
● Much more: linked requests,

registered fds and buffers, etc



  

Net busy waiting
● Kernel busy waiting for sockets
● sysctl net.core.busy_poll=<microseconds>
● Busy wait in select(2), poll(2), epoll(7)

– Avoids descheduling current task and idling CPU

● Busy waiting is useful when latency is important 
and there are dedicated CPUs available



  

Is AIO the End of File
Descriptor Monitoring?

wait_fd_readable(fd);

read(fd);

done_cb();

async_read(fd, done_cb);

Instead of splitting I/O tasks into fd monitoring and I/O steps, let 
the kernel perform I/O asynchronously with io_uring. 

Monitoring approach: AIO approach:

io_uring calls file_ops->poll() 
internally, fewer system calls needed



  

Migrating to AIO
Applications and libraries are designed around file 
descriptor monitoring:
int monitor_fd(int fd, int events, ready_func ready_cb); 

An AIO read interface looks like this:
int aio_read(int fd, off_t off, void *buf, size_t len,
             done_func done_cb);

Big change for existing code bases :(

See my blog for consequences on software ecosystem:
http://blog.vmsplice.net/2020/07/rethinking-event-loop-integration-for.html

http://blog.vmsplice.net/2020/07/rethinking-event-loop-integration-for.html


  

Other APIs
● fasync/SIGIO

– Old signal-based mechanism
– Rarely-used, programming with signals is tricky

● Linux AIO
– Subset of io_uring functionality
– Similar shared memory ring design



  

fdmonbench
● Message is received on a random fd and is sent 

back
● No changes to set of monitored fds during 

benchmark
● Number of fds and number of receivers can be 

controlled
● https://github.com/stefanha/fdmonbench

https://github.com/stefanha/fdmonbench


  

Scalability

1 4 8 32 64 128 256 512 1024 4096 16386 65536
100000

150000

200000

250000

300000

350000

select
poll
epoll
io_uring
io_uring-aio
threads

File Descriptors

R
o

u
n

d
tr

ip
s 

p
e

r 
S

e
co

n
d

Linux 5.9.16, 16 GB RAM
i7-8665U 4 cores x 2 HT



  

CPU Efficiency

1 4 8 32 64 128 256 512 1024 4096 16386 65536
120000

130000

140000

150000

160000

170000

180000

190000

200000

210000

220000

select
poll
epoll
io_uring
io_uring-aio
threads

File Descriptors

R
o

u
n

d
tr

ip
s 

p
e

r 
C

P
U

 S
e

co
n

d
Linux 5.9.16, 16 GB RAM
i7-8665U 4 cores x 2 HT



  

API Summary
API POSIX? Herd? Complexity Comments

select(2) ✓ ✗ O(max_fdnum) For small tasks

poll(2) ✓ ✗ O(nfds) For portability

epoll(7) ✗ ✓ O(num_ready) Popular today

io_uring ✗ ✓ O(num_ready) Popular 
tomorrow?

Linux AIO ✗ ✗ O(num_ready) io_uring fallback



  

Thank You
https://blog.vmsplice.net/

stefanha on IRC

@stefanha:matrix.org

stefanha@gmail.com

https://blog.vmsplice.net/
mailto:stefanha@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

