
The VIRTIO Lessons

Trust, Confidentiality, and
Hardening

Michael S. Tsirkin

mst@redhat.com

Stefan Hajnoczi

stefanha@redhat.com

1

2

Agenda

▸ Status of Linux VIRTIO driver trust model

▸ How we got here

･ Hypervisor architecture

･ IOMMUs and hardware VIRTIO devices

･ Linux VDUSE

▸ Where we are going

･ Confidential VMs with untrusted & trusted

(TDISP) devices

Open standard for I/O devices with broad support

across hypervisors and operating systems.

VIRTIO

3

QEMU
macOS

Virtualization
framework

FreeBSD
bhyve …

Linux BSD macOS Windows …Guests

Hosts

Driver

Device

VIRTIO 1.2 specification:

https://docs.oasis-open.org/virtio/virtio/v1.2/virtio-v1.2.html

https://docs.oasis-open.org/virtio/virtio/v1.2/virtio-v1.2.html

4

VIRTIO Device Types

Standard device types include:

▸ Net - Network interface

▸ Blk - Block device

▸ GPU - Graphics

▸ Serial - Serial console device

19 standard device types as of VIRTIO 1.2

5

Applications of VIRTIO

1. Traditional virtualization use case

･ Software paravirtualized devices in hypervisors

2. Linux VDUSE

･ Software devices for bare metal or containers

3. Hardware VIRTIO devices

4. Confidential computing with software or hardware devices

･ Lots of interest from CPU and cloud vendors to offer this

Let’s explore their different trust models…

Hypervisor and devices have full access to guest RAM

Devices reach into guest RAM to transfer I/O buffers

What are the implications?

Traditional Virtualization Use Case

6

Device

Driver
Guest
RAM

7

Malicious Read from RAM

Extract sensitive information (passwords, cryptographic

keys, confidential data)

“Can my hosting provider see everything inside my

Virtual Private Server?”

▸ Yes 😁
👿

Guest
RAM

8

Malicious Write to RAM

▸ Crashing driver/OS/application

▸ Changing critical state (process uid/gid)

▸ Code execution

The guest is completely controlled by the host 👿

Guest
RAM

9

Why Drivers trust Devices

Drivers may trust hypervisor because hypervisor already as full

access to guest

It’s futile for drivers to distrust devices built into the hypervisor, too

But VIRTIO use cases expanded and the status quo was no longer

acceptable…

A way to use the same userspace VIRTIO device implementation for

guests and bare metal (containers)

Existing kernel virtio driver now talks to a userspace device instead of a

hypervisor

Linux VDUSE Use Case

10

Driver
(Kernel)

Device
(Userspace)

VDUSE overview:

https://www.redhat.com/en/blog/introducing-vduse-softwar

e-defined-datapath-virtio

https://www.redhat.com/en/blog/introducing-vduse-software-defined-datapath-virtio
https://www.redhat.com/en/blog/introducing-vduse-software-defined-datapath-virtio

11

Comparing Traditional and VDUSE Trust Models

Guest Driver

Host + Device Kernel Driver

Userspace DeviceUntrusted

Trusted

❌✅

VDUSE kernel driver must not trust userspace device

Traditional VDUSE

12

Kernel/Userspace Trust Model

Privileged userspace processes can reconfigure system and access data

BUT

must not corrupt kernel memory or gain kernel code execution

Why? Signed kernel modules, kernel_lockdown(7)

Driver must validate data from device

Driver must isolate device to protect I/O buffers

(RAM)

Mistrust in Devices and Drivers

13

Driver

Device

I/O
Buffers

14

Input Validation

Linux VIRTIO drivers were

checked to add input validation

Multi-person effort

VIRTIO core and many devices

now validate all input

commit 6ae6ff6f6e7d2f304a12a53af8298e4f16ad633e
Author: Jason Wang <jasowang@redhat.com>
Date: Tue Oct 19 15:01:43 2021 +0800

virtio-blk: validate num_queues during probe
...
diff --git a/drivers/block/virtio_blk.c
b/drivers/block/virtio_blk.c
index a33fe0743672..dbcf2a7e4a00 100644
--- a/drivers/block/virtio_blk.c
+++ b/drivers/block/virtio_blk.c
@@ -571,6 +571,10 @@ static int init_vq(struct virtio_blk
*vblk)
 &num_vqs);
 if (err)
 num_vqs = 1;
+ if (!err && !num_vqs) {
+ dev_err(&vdev->dev, "MQ advertisted but zero
queues reported\n");
+ return -EINVAL;
+ }

15

Restricting DMA using an IOMMU

Devices with unrestricted DMA can snoop or corrupt

RAM

IOMMU only allows DMA to/from RAM granted by

driver

VDUSE has an IOTLB mechanism similar to an IOMMU

▸ ioctl(VDUSE_IOTLB_GET_FD)

Device

I/O
Buffers

IOMMU

16

Hardware VIRTIO Devices

Physical PCI adapters available from hardware vendors & custom DPUs

PCI device assignment to guest

IOMMU can be used to restrict device’s RAM access

Similar trust model to Linux VDUSE

VIRTIO PCI Device

I/O
Buffers

IOMMU

Guest Driver

17

Confidential Computing

Deploy a workload without trusting hosting provider

Host compromise should not compromise guests

Hardware and software still a work in progress

Guest

Host

��
❌

Details on platform specifics:

https://www.redhat.com/en/blog/confidenti

al-computing-platform-specific-details

https://www.redhat.com/en/blog/confidential-computing-platform-specific-details
https://www.redhat.com/en/blog/confidential-computing-platform-specific-details

18

How Confidential VMs Work

Reduces the Trusted Computing Base (TCB)

▸ Host kernel and/or hypervisor no longer trusted

▸ CPU still trusted

▸ Physical & side-channel attacks, denial of service out of

scope

Hypervisor and host kernel cannot access guest:

▸ CPU registers are protected

▸ Guest RAM is protected

19

Memory Encryption

Transparent

encryption/decryption in guest

No encryption/decryption in

host kernel & hypervisor

Guest

🔒
Memory Controller🔑

Hypervisor

🔒
Memory Controller🔑❌

20

Memory Encryption - Integrity Protection

State of the art is encrypted guest RAM with integrity protection (tampering

detection)

Without integrity protection, hypervisor or device writes to encrypted

memory result in garbage being silently read by driver

🔐Guest ❌
Integrity Error 🙂

Junk (No Integrity) 🙁
RAM

21

Toy Example
Toy example does not work like Intel TDX, AMD SEV, etc (they involve

remote attestation) but resembles IBM Secure Execution. Bare minimum to

show confidential computing is possible:

1. User provides initial VM memory state encrypted with CPU’s public key

2. CPU decrypts initial VM memory state with its private key and places it

into encrypted guest RAM

3. Hypervisor launches VM but cannot snoop/tamper with encrypted

guest RAM or CPU registers

4. User knows VM is running on a trusted CPU because the image was

decrypted with the private key that no one else has

22

,

Untrusted Devices in Confidential Computing

Can Confidential VMs use untrusted devices? Yes, some.

▸ Network interface - Encrypt communication with (D)TLS

so device cannot inspect or tamper with messages

▸ Storage device - Encrypt disk with dm-crypt + dm-integrity

so device cannot inspect or tamper with stored data

23

Isolating Untrusted Devices with swiotlb

Linux swiotlb bounce buffers DMA transfers

Place bounce buffer in unencrypted memory

where untrusted devices can access it

Drivers already support this via Linux DMA

API - no driver effort needed!

Driver

🔓
swiotlb

Device

🔐
Performance overhead & optimizations:
https://www.usenix.org/conference/atc23
/presentation/li-dingji

https://www.usenix.org/conference/atc23/presentation/li-dingji
https://www.usenix.org/conference/atc23/presentation/li-dingji

24

Interrupt Hardening

Linux IRQ core by default enables IRQs immediately in request_irq()

What if a malicious device raises an IRQ when driver is not ready?

▸ Interrupt handler functions may execute in unprepared environment

▸ Need to protect against probe/remove race conditions in drivers

Previous patches didn’t work with affinity managed interrupts, more work

needed

25

Speculation Barriers

Drivers may be vulnerable to Spectre side-channel attacks

Hypervisor must not be able to extract data from Confidential VM

Even with encrypted memory, some attacks may be possible

Linux 6.6 *_nospec() macros not used in VIRTIO driver code

Area for future work

26

What about other Device Types?

▸ Serial - Cannot trust input untrusted device and cannot protect

output from snooping

▸ GPU - Cannot trust output from snooping

▸ Input - Cannot trust input from untrusted device

What to do about these device types?

27

Trusted Devices

PCI-SIG TEE Device Interface Security Protocol (TDISP)

Attestation process verifies device is trusted

Trusted device becomes part of TCB

Bonus: swiotlb no longer needed (performance boost)

Goal: Only run on hardware/hypervisor configuration

that guest considers trusted

Driver

Trusted Device��

28

Which Devices are Trusted?

User should be able to specify which implementations can be trusted

▸ “I trust Vendor A’s virtio-net device revision 2”

▸ “I don’t trust other virtio-net devices” or “Use swiolb for other

virtio-net devices”

Not yet implemented, belongs in Linux driver core

29

User Policy on VIRTIO Devices & Features

Even minimal VIRTIO machines might need lots of code (PCI, ACPI)

Some users prefer virtio-mmio, others need PCI features (e.g. hotplug)

Some users may want to restrict some functionality (no hotplug)

Need a way to set this policy

30

User Policy for Confidential VMs

What to trust is a user policy decision

No single kernel parameter can express user’s policy

Need control over:

▸ Which trusted devices are allowed

▸ Which untrusted devices are allowed

▸ What to do when malicious device action occurs?

Wish there was a comprehensive solution a la security modules or

maybe Open Policy Agent support

31

Conclusion

Linux VIRTIO drivers have been hardened

Confidential computing story is work in progress:

▸ Untrusted devices are the first step

▸ Trusted devices in the future

Need user policy controls for confidential VMs

32

Preventing Denial of Service in VDUSE

VDUSE userspace device must not hang system

VDUSE control plane uses read(2)/write(2) for

asynchronous kernel->userspace communication

Existing drivers generally asynchronous and tolerant of

unresponsive devices

Device
(Userspace)

VDUSE

vDPA

VIRTIO driver

33

What about using IOMMU inside guest?

Devices built into hypervisor don’t benefit from vIOMMU

isolation

vhost-user devices don’t benefit from vIOMMU isolation

▸ vhost-user shared memory exposes all guest RAM

 👎

34

VIRTIO Intel TDX Status

Considered hardened according to Intel TDX document:

▸ virtio-pci with split virtqueue, no indirect descriptors

▸ virtio-block, virtio-net, virtio-console, virtio-9p, and virtio-vsock

https://intel.github.io/ccc-linux-guest-hardening-docs/sec

urity-spec.html

https://intel.github.io/ccc-linux-guest-hardening-docs/security-spec.html
https://intel.github.io/ccc-linux-guest-hardening-docs/security-spec.html

